001014693 001__ 1014693
001014693 005__ 20240712112825.0
001014693 0247_ $$2doi$$a10.1021/acsami.3c05878
001014693 0247_ $$2ISSN$$a1944-8244
001014693 0247_ $$2ISSN$$a1944-8252
001014693 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03398
001014693 0247_ $$2pmid$$a37442800
001014693 0247_ $$2WOS$$aWOS:001029685700001
001014693 037__ $$aFZJ-2023-03398
001014693 082__ $$a600
001014693 1001_ $$0P:(DE-Juel1)180280$$aLu, Xin$$b0$$eCorresponding author
001014693 245__ $$aLi-Ion Conductivity of Single-Step Synthesized Glassy-Ceramic Li 10 GeP 2 S 12 and Post-heated Highly Crystalline Li 10 GeP 2 S 12
001014693 260__ $$aWashington, DC$$bSoc.$$c2023
001014693 3367_ $$2DRIVER$$aarticle
001014693 3367_ $$2DataCite$$aOutput Types/Journal article
001014693 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698914653_24778
001014693 3367_ $$2BibTeX$$aARTICLE
001014693 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014693 3367_ $$00$$2EndNote$$aJournal Article
001014693 520__ $$aLi10GeP2S12 is a phosphosulfide solid electrolyte that exhibits exceptionally high Li-ion conductivity, reaching a conductivity above 10–3 S cm–1 at room temperature, rivaling that of liquid electrolytes. Herein, a method to produce glassy-ceramic Li10GeP2S12 via a single-step utilizing high-energy ball milling was developed and systematically studied. During the high energy milling process, the precursors experience three different stages, namely, the ‘Vitrification zone’ where the precursors undergo homogenization and amorphization, ‘Intermediary zone’ where Li3PS4 and Li4GeS4 are formed, and the ‘Product stage’ where the desired glassy-ceramic Li10GeP2S12 is formed after 520 min of milling. At room temperature, the as-milled sample achieved a high ionic conductivity of 1.07 × 10–3 S cm–1. It was determined via quantitative phase analyses (QPA) of transmission X-ray diffraction results that the as-milled Li10GeP2S12 possessed a high degree of amorphization (44.4 wt %). To further improve the crystallinity and ionic conductivity of the Li10GeP2S12, heat treatment of the as-milled sample was carried out. The optimal heat-treated Li10GeP2S12 is almost fully crystalline and possesses a room temperature ionic conductivity of 3.27 × 10–3 S cm–1, an over 200% increase compared to the glassy-ceramic Li10GeP2S12. These findings help provide previously lacking insights into the controllable preparation of Li10GeP2S12 material.
001014693 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001014693 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001014693 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014693 7001_ $$0P:(DE-Juel1)188297$$aWindmüller, Anna$$b1
001014693 7001_ $$0P:(DE-Juel1)192424$$aSchmidt, Dana$$b2
001014693 7001_ $$0P:(DE-Juel1)194730$$aSchöner, Sandro$$b3
001014693 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b4
001014693 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b5
001014693 7001_ $$00000-0002-6649-5865$$aLiao, Xunfan$$b6
001014693 7001_ $$00000-0003-4709-7623$$aChen, Yiwang$$b7
001014693 7001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b8
001014693 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b9
001014693 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b10
001014693 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.3c05878$$gVol. 15, no. 29, p. 34973 - 34982$$n29$$p34973 - 34982$$tACS applied materials & interfaces$$v15$$x1944-8244$$y2023
001014693 8564_ $$uhttps://juser.fz-juelich.de/record/1014693/files/lu-et-al-2023-li-ion-conductivity-of-single-step-synthesized-glassy-ceramic-li10gep2s12-and-post-heated-highly.pdf$$yOpenAccess
001014693 8767_ $$d2023-09-06$$eHybrid-OA$$jPublish and Read
001014693 909CO $$ooai:juser.fz-juelich.de:1014693$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001014693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180280$$aForschungszentrum Jülich$$b0$$kFZJ
001014693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188297$$aForschungszentrum Jülich$$b1$$kFZJ
001014693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192424$$aForschungszentrum Jülich$$b2$$kFZJ
001014693 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)192424$$aRWTH Aachen$$b2$$kRWTH
001014693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194730$$aForschungszentrum Jülich$$b3$$kFZJ
001014693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b4$$kFZJ
001014693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b5$$kFZJ
001014693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b8$$kFZJ
001014693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b9$$kFZJ
001014693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b10$$kFZJ
001014693 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b10$$kRWTH
001014693 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001014693 9141_ $$y2023
001014693 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001014693 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001014693 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
001014693 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001014693 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
001014693 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014693 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001014693 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001014693 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001014693 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001014693 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
001014693 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001014693 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2023-10-25
001014693 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2023-10-25
001014693 920__ $$lyes
001014693 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001014693 9801_ $$aAPC
001014693 9801_ $$aFullTexts
001014693 980__ $$ajournal
001014693 980__ $$aVDB
001014693 980__ $$aUNRESTRICTED
001014693 980__ $$aI:(DE-Juel1)IEK-9-20110218
001014693 980__ $$aAPC
001014693 981__ $$aI:(DE-Juel1)IET-1-20110218