001     1014745
005     20240715202024.0
024 7 _ |a 10.1093/insilicoplants/diad012
|2 doi
024 7 _ |a 10.34734/FZJ-2023-03434
|2 datacite_doi
024 7 _ |a WOS:001079181700001
|2 WOS
037 _ _ |a FZJ-2023-03434
082 _ _ |a 004
100 1 _ |a Zhou, Xiaoran
|0 P:(DE-Juel1)173813
|b 0
|u fzj
245 _ _ |a Phloem anatomy restricts root system architecture development: theoretical clues from in silico experiments
260 _ _ |a [Oxford]
|c 2023
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721023436_6762
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plant growth and development involve the integration of numerous processes, influenced by both endogenous and exogenous factors. At any given time during a plant’s life cycle, the plant architecture is a readout of this continuous integration. However, untangling the individual factors and processes involved in the plant development and quantifying their influence on the plant developmental process is experimentally challenging. Here we used a combination of computational plant models (CPlantBox and PiafMunch) to help understand experimental findings about how local phloem anatomical features influence the root system architecture. Our hypothesis was that strong local phloem resistance would restrict local carbon flow and locally modify root growth patterns. To test this hypothesis, we simulated the mutual interplay between the root system architecture development and the carbohydrate distribution to provide a plausible mechanistic explanation for several experimental results. Our in silico experiments highlighted the strong influence of local phloem hydraulics on the root growth rates, growth duration and final length. The model result showed that a higher phloem resistivity leads to shorter roots due to the reduced flow of carbon within the root system. This effect was due to local properties of individual roots, and not linked to any of the pleiotropic effects at the root system level. Our results open a door to a better representation of growth processes in a plant computational model.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Schnepf, Andrea
|0 P:(DE-Juel1)157922
|b 1
|u fzj
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 2
|u fzj
700 1 _ |a Leitner, Daniel
|0 P:(DE-Juel1)187335
|b 3
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 4
|u fzj
700 1 _ |a Lobet, Guillaume
|0 P:(DE-Juel1)171180
|b 5
|e Corresponding author
773 _ _ |a 10.1093/insilicoplants/diad012
|0 PERI:(DE-600)3019806-9
|n 2
|p diad012
|t In silico plants
|v 5
|y 2023
|x 2517-5025
856 4 _ |u https://juser.fz-juelich.de/record/1014745/files/Invoice_SOA23LT000782.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1014745/files/diad012.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014745
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173813
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157922
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187335
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171180
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-15T16:13:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-15T16:13:56Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IN SILICO PLANTS : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-15T16:13:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21