Journal Article FZJ-2023-03434

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Phloem anatomy restricts root system architecture development: theoretical clues from in silico experiments

 ;  ;  ;  ;  ;

2023
Oxford University Press [Oxford]

In silico plants 5(2), diad012 () [10.1093/insilicoplants/diad012]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Plant growth and development involve the integration of numerous processes, influenced by both endogenous and exogenous factors. At any given time during a plant’s life cycle, the plant architecture is a readout of this continuous integration. However, untangling the individual factors and processes involved in the plant development and quantifying their influence on the plant developmental process is experimentally challenging. Here we used a combination of computational plant models (CPlantBox and PiafMunch) to help understand experimental findings about how local phloem anatomical features influence the root system architecture. Our hypothesis was that strong local phloem resistance would restrict local carbon flow and locally modify root growth patterns. To test this hypothesis, we simulated the mutual interplay between the root system architecture development and the carbohydrate distribution to provide a plausible mechanistic explanation for several experimental results. Our in silico experiments highlighted the strong influence of local phloem hydraulics on the root growth rates, growth duration and final length. The model result showed that a higher phloem resistivity leads to shorter roots due to the reduced flow of carbon within the root system. This effect was due to local properties of individual roots, and not linked to any of the pleiotropic effects at the root system level. Our results open a door to a better representation of growth processes in a plant computational model.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Fees ; IF < 5 ; JCR ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2023-09-08, last modified 2024-07-15


OpenAccess:
Download fulltext PDF
(additional files)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)