001014776 001__ 1014776
001014776 005__ 20240711085631.0
001014776 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2023.07.021
001014776 0247_ $$2ISSN$$a0955-2219
001014776 0247_ $$2ISSN$$a1873-619X
001014776 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03460
001014776 0247_ $$2WOS$$aWOS:001065318400001
001014776 037__ $$aFZJ-2023-03460
001014776 082__ $$a660
001014776 1001_ $$0P:(DE-Juel1)187106$$aZahler, M. Pascal$$b0
001014776 245__ $$aReactive FAST/SPS sintering of strontium titanate as a tool for grain boundary engineering
001014776 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001014776 3367_ $$2DRIVER$$aarticle
001014776 3367_ $$2DataCite$$aOutput Types/Journal article
001014776 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1701754842_527
001014776 3367_ $$2BibTeX$$aARTICLE
001014776 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001014776 3367_ $$00$$2EndNote$$aJournal Article
001014776 500__ $$aOpen Access; Grants: DFG MA 1280/69-1 & Emmy Noether-Program No. Rh 146/1-1
001014776 520__ $$aA high-pressure FAST/Spark Plasma Sintering method was used to produce dense SrTiO3 ceramics at temperaturesof 1050 ◦C, more than 250 ◦C below typical sintering temperatures. Combining SPS with solid-state reactivesintering further improves densification. The process resulted in fine-grained microstructures with grain sizes of~300 nm. STEM-EDS was utilized for analyzing cationic segregation at grain boundaries, revealing no cationicsegregation at the GBs after SPS. Electrochemical impedance spectroscopy indicates the presence of a spacecharge layer. Space charge thicknesses were calculated according to the plate capacitor equation and the Mott-Schottky model. They fit the expected size range, yet the corresponding space charge potentials are lower thantypical values of conventionally processed SrTiO3. The low space charge potential was associated to low cationicGB segregation after SPS and likely results in better grain boundary conductivity. The findings offer a path totailor grain boundary segregation and conductivity in perovskite ceramics.
001014776 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001014776 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001014776 7001_ $$0P:(DE-Juel1)190607$$aJennings, Dylan$$b1
001014776 7001_ $$0P:(DE-Juel1)174079$$aKindelmann, Moritz$$b2
001014776 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj
001014776 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b4$$eCorresponding author
001014776 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2023.07.021$$gVol. 43, no. 15, p. 6925 - 6933$$n15$$p6925 - 6933$$tJournal of the European Ceramic Society$$v43$$x0955-2219$$y2023
001014776 8564_ $$uhttps://juser.fz-juelich.de/record/1014776/files/Main%20Document.pdf$$yOpenAccess
001014776 8767_ $$d2023-09-11$$eHybrid-OA$$jZahlung angewiesen$$zKostenstelle erfragt
001014776 909CO $$ooai:juser.fz-juelich.de:1014776$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001014776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187106$$aForschungszentrum Jülich$$b0$$kFZJ
001014776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190607$$aForschungszentrum Jülich$$b1$$kFZJ
001014776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174079$$aForschungszentrum Jülich$$b2$$kFZJ
001014776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
001014776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b4$$kFZJ
001014776 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001014776 9141_ $$y2023
001014776 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001014776 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001014776 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001014776 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001014776 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2022$$d2023-08-29
001014776 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001014776 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001014776 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
001014776 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
001014776 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001014776 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001014776 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-29
001014776 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001014776 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EUR CERAM SOC : 2022$$d2023-08-29
001014776 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001014776 920__ $$lyes
001014776 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001014776 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
001014776 9801_ $$aAPC
001014776 9801_ $$aFullTexts
001014776 980__ $$ajournal
001014776 980__ $$aVDB
001014776 980__ $$aUNRESTRICTED
001014776 980__ $$aI:(DE-Juel1)IEK-1-20101013
001014776 980__ $$aI:(DE-82)080011_20140620
001014776 980__ $$aAPC
001014776 981__ $$aI:(DE-Juel1)IMD-2-20101013