001     1014776
005     20240711085631.0
024 7 _ |a 10.1016/j.jeurceramsoc.2023.07.021
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03460
|2 datacite_doi
024 7 _ |a WOS:001065318400001
|2 WOS
037 _ _ |a FZJ-2023-03460
082 _ _ |a 660
100 1 _ |a Zahler, M. Pascal
|0 P:(DE-Juel1)187106
|b 0
245 _ _ |a Reactive FAST/SPS sintering of strontium titanate as a tool for grain boundary engineering
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701754842_527
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Open Access; Grants: DFG MA 1280/69-1 & Emmy Noether-Program No. Rh 146/1-1
520 _ _ |a A high-pressure FAST/Spark Plasma Sintering method was used to produce dense SrTiO3 ceramics at temperaturesof 1050 ◦C, more than 250 ◦C below typical sintering temperatures. Combining SPS with solid-state reactivesintering further improves densification. The process resulted in fine-grained microstructures with grain sizes of~300 nm. STEM-EDS was utilized for analyzing cationic segregation at grain boundaries, revealing no cationicsegregation at the GBs after SPS. Electrochemical impedance spectroscopy indicates the presence of a spacecharge layer. Space charge thicknesses were calculated according to the plate capacitor equation and the Mott-Schottky model. They fit the expected size range, yet the corresponding space charge potentials are lower thantypical values of conventionally processed SrTiO3. The low space charge potential was associated to low cationicGB segregation after SPS and likely results in better grain boundary conductivity. The findings offer a path totailor grain boundary segregation and conductivity in perovskite ceramics.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jennings, Dylan
|0 P:(DE-Juel1)190607
|b 1
700 1 _ |a Kindelmann, Moritz
|0 P:(DE-Juel1)174079
|b 2
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 3
|u fzj
700 1 _ |a Rheinheimer, Wolfgang
|0 P:(DE-Juel1)185039
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.jeurceramsoc.2023.07.021
|g Vol. 43, no. 15, p. 6925 - 6933
|0 PERI:(DE-600)2013983-4
|n 15
|p 6925 - 6933
|t Journal of the European Ceramic Society
|v 43
|y 2023
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/1014776/files/Main%20Document.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1014776
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187106
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190607
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174079
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)185039
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-22
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J EUR CERAM SOC : 2022
|d 2023-08-29
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21