Hauptseite > Publikationsdatenbank > Recent Progress of theFull-Potential Linearized Augmented Plane-Wave (FLAPW) Method |
Conference Presentation (Invited) | FZJ-2023-03528 |
2023
Abstract: Among the electronic structure methods for determining the electronic, structural, dynamic, magnetic or transport properties of solids based on density functional theory, the FLAPW method [1], an all-electron method without shape approximation of charge or potential, is recognised as the method whose results are considered the standard for other methods [2, 3]. The precision of the basis set including for the use of GW calculations has been consistently improved using local orbitals. The numerical complexity of the basis is how also a bottleneck for quick developments of new properties. In this talk I present some recent progress in the application of the Kerker-Method to speed-up the self-consistency of the charge-density [4], the hybrid-functionals [5], the optimized effective potential approximation [6] and of the density-functional perturbation theory to calculation the phonon-dispersion [7]. The density functional equations are implemented in the FLEUR code [8,9] and the GW extension is implemented in the SPEX module [10]. I provide some insight in our effort to connect our code to the high-throughput engine AiiDA [11] and make our code exascale ready for the coming European Exascale machine. The work was supported by the European Centre of Excellence MaX ``Materials design at the Exascale'' (Grant No. 824143) funded by the EU.
![]() |
The record appears in these collections: |