001015193 001__ 1015193
001015193 005__ 20240619092106.0
001015193 0247_ $$2doi$$a10.1063/5.0147524
001015193 0247_ $$2ISSN$$a0021-9606
001015193 0247_ $$2ISSN$$a1520-9032
001015193 0247_ $$2ISSN$$a1089-7690
001015193 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03589
001015193 0247_ $$2pmid$$a37125718
001015193 0247_ $$2WOS$$aWOS:001010685000009
001015193 037__ $$aFZJ-2023-03589
001015193 082__ $$a530
001015193 1001_ $$0P:(DE-HGF)0$$aMiyashita, N.$$b0
001015193 245__ $$aSliding friction on ice
001015193 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2023
001015193 3367_ $$2DRIVER$$aarticle
001015193 3367_ $$2DataCite$$aOutput Types/Journal article
001015193 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706011078_10617
001015193 3367_ $$2BibTeX$$aARTICLE
001015193 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001015193 3367_ $$00$$2EndNote$$aJournal Article
001015193 520__ $$aWe study the friction when rectangular blocks made from rubber, polyethylene, and silica glass are sliding on ice surfaces at different temperatures ranging from -40 to 0 °C, and sliding speeds ranging from 3 μm/s to 1 cm s-1. We consider a winter tire rubber compound both in the form of a compact block and as a foam with ∼10% void volume. We find that both rubber compounds exhibit a similar friction on ice for all studied temperatures. As in a previous study at low temperatures and low sliding speeds, we propose that an important contribution to the friction force is due to slip between the ice surface and ice fragments attached to the rubber surface. At temperatures around 0 °C (or for high enough sliding speeds), a thin pre-melted water film will occur at the rubber-ice interface, and the contribution to the friction from shearing the area of real contact is small. In this case, the dominant contribution to the friction force is due to viscoelastic deformations of the rubber by the ice asperities. The sliding friction for polyethylene (PE) and silica glass (SG) blocks on ice differs strongly from that of rubber. The friction coefficient for PE is ∼0.04-0.15 and is relatively weakly velocity dependent except close to the ice melting temperature where the friction coefficient increases toward low sliding speeds. Silica glass exhibits a similarly low friction as PE for T > -10 °C but very large friction coefficients (of order unity) at low temperatures. For both PE and SG, unless the ice track is very smooth, the friction force depends on the position x along the sliding track. This is due to bumps on the ice surface, which are sheared off by the elastically stiff PE and SG blocks, resulting in a plowing-type of contribution to the friction force. This results in friction coefficients, which locally can be very large ∼1, and visual inspection of the ice surface after the sliding acts show ice wear particles (white powder) in regions where ice bumps occur. Similar effects can be expected for rubber blocks below the rubber glass transition temperature, and the rubber is in the (elastically stiff) glassy state.
001015193 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001015193 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001015193 7001_ $$0P:(DE-HGF)0$$aYakini, A. E.$$b1
001015193 7001_ $$0P:(DE-Juel1)130902$$aPyckhout-Hintzen, W.$$b2
001015193 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b3$$eCorresponding author
001015193 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0147524$$gVol. 158, no. 17, p. 174702$$n17$$p174702$$tThe journal of chemical physics$$v158$$x0021-9606$$y2023
001015193 8564_ $$uhttps://juser.fz-juelich.de/record/1015193/files/174702_1_5.0147524.pdf$$yOpenAccess
001015193 8767_ $$d2023-09-22$$eHybrid-OA$$jPublish and Read
001015193 909CO $$ooai:juser.fz-juelich.de:1015193$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001015193 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a he Yokohama Rubber Company, 2-1 Oiwake, Hiratsuka, Kanagawa 254-8601, Japan$$b0
001015193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001015193 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a MultiscaleConsulting, Wolfshovener Str. 2, 52428 Jülich, Germany$$b1
001015193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130902$$aForschungszentrum Jülich$$b2$$kFZJ
001015193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b3$$kFZJ
001015193 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001015193 9141_ $$y2023
001015193 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001015193 915pc $$0PC:(DE-HGF)0102$$2APC$$aTIB: AIP Publishing 2021
001015193 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001015193 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001015193 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger
001015193 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2022$$d2023-10-21
001015193 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001015193 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001015193 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
001015193 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001015193 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001015193 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001015193 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001015193 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001015193 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001015193 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001015193 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001015193 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x2
001015193 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x3
001015193 9801_ $$aAPC
001015193 9801_ $$aFullTexts
001015193 980__ $$ajournal
001015193 980__ $$aVDB
001015193 980__ $$aI:(DE-Juel1)PGI-1-20110106
001015193 980__ $$aI:(DE-Juel1)IAS-1-20090406
001015193 980__ $$aI:(DE-Juel1)IBI-8-20200312
001015193 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001015193 980__ $$aAPC
001015193 980__ $$aUNRESTRICTED
001015193 981__ $$aI:(DE-Juel1)JCNS-1-20110106