Poster (After Call) FZJ-2023-03601

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Linking Network and Neuron Level Correlations via Renormalized Field Theory

 ;  ;

2023

Bernstein Conference 2023, BerlinBerlin, Germany, 26 Sep 2023 - 30 Sep 20232023-09-262023-09-30 [10.34734/FZJ-2023-03601]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: It is frequently hypothesized that cortical networks operate close to a critical point. Advantages of criticality include rich dynamics well-suited for computation and critical slowing down, which may offer a mechanism for dynamic memory. However, mean-field approximations, while versatile and popular, inherently neglect the fluctuations responsible for such critical dynamics. Thus, a renormalized theory is necessary. We consider the Sompolinsky-Crisanti-Sommers model which displays a well studied chaotic as well as a magnetic transition. Based on the analogue of a quantum effective action, we derive self-consistency equations for the first two renormalized Greens functions. Their self-consistent solution reveals a coupling between the population level activity and single neuron heterogeneity. The quantitative theory explains the population autocorrelation function, the single-unit autocorrelation function with its multiple temporal scales, and cross correlations.


Contributing Institute(s):
  1. Quanten-Theorie der Materialien (PGI-1)
  2. Computational and Systems Neuroscience (INM-6)
  3. Theoretical Neuroscience (IAS-6)
  4. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 5232 - Computational Principles (POF4-523) (POF4-523)
  2. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  3. RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) (BMBF-01IS19077A)
  4. DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) (491111487)
  5. MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018) (HGF-SMHB-2014-2018)

Appears in the scientific report 2023
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Poster
Institutssammlungen > INM > INM-10
Institutssammlungen > IAS > IAS-6
Institutssammlungen > INM > INM-6
Institutssammlungen > PGI > PGI-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-09-25, letzte Änderung am 2024-03-13


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)