Home > Publications database > Phase-Coherent Transport in Multi-Terminal Topological Insulator-Based Nanostructures |
Talk (non-conference) (Invited) | FZJ-2023-03640 |
2023
Abstract: Networks of three-dimensional nanoribbons of topological insulators (TI) in combination with superconducting electrodes are promising building blocks for topoelectronic applications and topological quantum computations. In our approach, these structures are fabricated by a dedicated fabrication method that uses selective-area growth in combination with in-situ shadow evaporation of the superconducting electrodes. On single straight TI nanoribbons and TI ring structures, we have found pronounced Aharonov-Bohm oscillations in magnetoresistance, indicating transport via topologically protected surface states [1,2,3]. In three-terminal TI nanoribbon T- and Y-junctions, a dependence of the current on the in-plane magnetic field has been observed, with the current in the surface states being clearly steered toward a preferred output at different magnetic field orientations. The origin of this steering effect is interpreted in terms of orbital effects in combination with spin-momentum locking [4]. In in-situ prepared superconductor-topological insulator nanoribbon Josephson junctions a pronounced supercurrent was observed [5]. For multi-terminal TI hybrid junction the interplay of the Josephson supercurrent in the different branches is investigated. Here, we found a clear coupling in the supercurrent between the different electrodes. Work done in collaboration with: D. Rosenbach, J. Kölzer, G. Behner, E. Zimmermann, J. Teller, A. Rupp, J. Karthein, A.R. Jalil, K. Moors, T.W. Schmitt, M. Schleenvoigt, M. Vaßen-Carl, G. Bihlmaier, H. Lüth, G. Mussler, P. Schüffelgen, D. Grützmacher.[1] J. Kölzer, et al., Nanotechnology 31, 325001 (2020).[2] D. Rosenbach, et al., Sci. Post. Phys. Core 5, 17 (2022).[3] G. Behner et al., Nano Letters, 23, 6347 (2023).[4] J. Kölzer, et al., Communications Materials 2, 1 (2021).[5] D. Rosenbach, et al., Science Advances 7, eabf1854 (2021).
Keyword(s): Information and Communication (1st) ; Condensed Matter Physics (2nd)
![]() |
The record appears in these collections: |