001016716 001__ 1016716
001016716 005__ 20240712112825.0
001016716 0247_ $$2doi$$a10.1021/acs.jpcc.3c03563
001016716 0247_ $$2ISSN$$a1932-7447
001016716 0247_ $$2ISSN$$a1932-7455
001016716 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03708
001016716 0247_ $$2WOS$$aWOS:001122214700001
001016716 037__ $$aFZJ-2023-03708
001016716 082__ $$a530
001016716 1001_ $$0P:(DE-Juel1)165598$$aSchatz, Michael$$b0$$eCorresponding author
001016716 245__ $$aInterplay of Local pH and Cation Hydrolysis during Electrochemical CO 2 Reduction Visualized by In Operando Chemical Shift-Resolved Magnetic Resonance Imaging
001016716 260__ $$aWashington, DC$$bSoc.$$c2023
001016716 3367_ $$2DRIVER$$aarticle
001016716 3367_ $$2DataCite$$aOutput Types/Journal article
001016716 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1698320220_17303
001016716 3367_ $$2BibTeX$$aARTICLE
001016716 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001016716 3367_ $$00$$2EndNote$$aJournal Article
001016716 520__ $$aThe Cu-catalyzed electrochemical CO2 reduction enables the conversion of greenhouse gas emissions to fuels or platform chemicals with prospects of storing intermittent energy from renewable sources. While current research in tuning catalyst activity and product selectivity is often mired in finding electrode engineering solutions, the importance of electrolyte engineering is mostly overlooked. This study presents a method for measuring local pH profiles in electrode proximity and correlating them to cation-induced buffering effects. Magnetic resonance imaging (MRI) techniques were applied to evaluate the local pH values using spatially resolved 13C resonances of the CO2/HCO3–/CO32– equilibrium. The buffering effect of cation hydrolysis is substantiated by local shifts of the 23Na resonance of Na+ in the NaHCO3 electrolytes. Steeper local pH gradients, compared to experiments with KHCO3, account for increased selectivity for acetate formation from the solution-based reaction. Proven itself capable of elucidating the effect of cations on local pH values, our presented method supports tailoring the electrode–electrolyte interface to selectively generate value-added products.
001016716 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001016716 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001016716 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001016716 7001_ $$0P:(DE-Juel1)194361$$aKochs, Johannes Florian$$b1
001016716 7001_ $$0P:(DE-Juel1)169518$$aJovanovic, Sven$$b2
001016716 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3
001016716 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b4
001016716 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.3c03563$$gVol. 127, no. 38, p. 18986 - 18996$$n38$$p18986 - 18996$$tThe journal of physical chemistry / C$$v127$$x1932-7447$$y2023
001016716 8564_ $$uhttps://juser.fz-juelich.de/record/1016716/files/acs.jpcc.3c03563.pdf$$yOpenAccess
001016716 8767_ $$d2023-10-06$$eHybrid-OA$$jPublish and Read
001016716 909CO $$ooai:juser.fz-juelich.de:1016716$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001016716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165598$$aForschungszentrum Jülich$$b0$$kFZJ
001016716 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)165598$$aRWTH Aachen$$b0$$kRWTH
001016716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194361$$aForschungszentrum Jülich$$b1$$kFZJ
001016716 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)194361$$aRWTH Aachen$$b1$$kRWTH
001016716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169518$$aForschungszentrum Jülich$$b2$$kFZJ
001016716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001016716 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001016716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b4$$kFZJ
001016716 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b4$$kRWTH
001016716 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001016716 9141_ $$y2023
001016716 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001016716 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001016716 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001016716 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-09-02
001016716 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001016716 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-09-02
001016716 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001016716 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001016716 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001016716 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001016716 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001016716 920__ $$lyes
001016716 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001016716 9801_ $$aAPC
001016716 9801_ $$aFullTexts
001016716 980__ $$ajournal
001016716 980__ $$aVDB
001016716 980__ $$aUNRESTRICTED
001016716 980__ $$aI:(DE-Juel1)IEK-9-20110218
001016716 980__ $$aAPC
001016716 981__ $$aI:(DE-Juel1)IET-1-20110218