001     1016981
005     20240709081918.0
037 _ _ |a FZJ-2023-03888
041 _ _ |a English
100 1 _ |a Ali, Haider Adel
|0 P:(DE-Juel1)190784
|b 0
|e Corresponding author
111 2 _ |a 244th ECS Meeting
|c Gothenburg
|d 2023-10-08 - 2023-10-12
|w Sweden
245 _ _ |a A Hybrid Electrochemical Multi-Particle Model for Li-ion Batteries
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1698232429_9042
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Physics-based models have proven to be effective tools for understanding the behavior of Li-ion batteries, which is essential for improving their design and performance. Among the various physics-based models, the Doyle-Fuller-Newman (DFN) model has emerged as the most widely used due to its accurate simulation of battery behavior. To address certain limitations, the Multiple-Particle DFN (MP-DFN) model was introduced. The MP-DFN model employs multiple electrode particle sizes to account for internal concentration heterogeneities and accurately capture slow diffusion processes. However, it is worth noting that the MP-DFN model comes with a relatively high computational cost. To overcome these challenges, this study has developed a Hybrid-Multiple-Particle DFN (HMP-DFN) model.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a LLEC::VxG - Integration von "Vehicle-to-grid" (BMBF-03SF0628)
|0 G:(DE-Juel1)BMBF-03SF0628
|c BMBF-03SF0628
|x 1
700 1 _ |a Raijmakers, Luc
|0 P:(DE-Juel1)176196
|b 1
700 1 _ |a Chayambuka, Kudakwashe
|0 P:(DE-Juel1)186070
|b 2
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 3
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 4
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
909 C O |o oai:juser.fz-juelich.de:1016981
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190784
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)190784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173719
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a Eindhoven University of Technology
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21