001017087 001__ 1017087
001017087 005__ 20240226075510.0
001017087 0247_ $$2doi$$a10.1002/smll.202202492
001017087 0247_ $$2ISSN$$a1613-6810
001017087 0247_ $$2ISSN$$a1613-6829
001017087 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-03929
001017087 0247_ $$2pmid$$a36228092
001017087 0247_ $$2WOS$$aWOS:000867936900001
001017087 037__ $$aFZJ-2023-03929
001017087 082__ $$a620
001017087 1001_ $$00000-0003-3983-1277$$aGlueck, David$$b0
001017087 245__ $$aElectroneutral Polymer Nanodiscs Enable Interference‐Free Probing of Membrane Proteins in a Lipid‐Bilayer Environment
001017087 260__ $$aWeinheim$$bWiley-VCH$$c2022
001017087 3367_ $$2DRIVER$$aarticle
001017087 3367_ $$2DataCite$$aOutput Types/Journal article
001017087 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1697550300_28851
001017087 3367_ $$2BibTeX$$aARTICLE
001017087 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017087 3367_ $$00$$2EndNote$$aJournal Article
001017087 520__ $$aMembrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral—yet water-soluble—polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein–lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.
001017087 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001017087 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017087 7001_ $$0P:(DE-HGF)0$$aGrethen, Anne$$b1
001017087 7001_ $$00000-0003-3690-3183$$aDas, Manabendra$$b2
001017087 7001_ $$0P:(DE-HGF)0$$aMmeka, Ogochukwu Patricia$$b3
001017087 7001_ $$0P:(DE-HGF)0$$aPatallo, Eugenio Pérez$$b4
001017087 7001_ $$00000-0003-1668-4382$$aMeister, Annette$$b5
001017087 7001_ $$0P:(DE-HGF)0$$aRajender, Ritu$$b6
001017087 7001_ $$0P:(DE-HGF)0$$aKins, Stefan$$b7
001017087 7001_ $$00000-0002-6737-7203$$aRäschle, Markus$$b8
001017087 7001_ $$aVictor, Julian$$b9
001017087 7001_ $$0P:(DE-HGF)0$$aChu, Ci$$b10
001017087 7001_ $$0P:(DE-Juel1)156341$$aEtzkorn, Manuel$$b11
001017087 7001_ $$0P:(DE-HGF)0$$aKöck, Zoe$$b12
001017087 7001_ $$00000-0002-4860-1783$$aBernhard, Frank$$b13
001017087 7001_ $$00000-0002-1407-6677$$aBabalola, Jonathan Oyebamiji$$b14
001017087 7001_ $$0P:(DE-HGF)0$$aVargas, Carolyn$$b15
001017087 7001_ $$00000-0001-5469-8772$$aKeller, Sandro$$b16$$eCorresponding author
001017087 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202202492$$gVol. 18, no. 47, p. 2202492$$n47$$p2202492$$tSmall$$v18$$x1613-6810$$y2022
001017087 8564_ $$uhttps://juser.fz-juelich.de/record/1017087/files/Small%20-%202022%20-%20Glueck%20-%20Electroneutral%20Polymer%20Nanodiscs%20Enable%20Interference%E2%80%90Free%20Probing%20of%20Membrane%20Proteins%20in%20a.pdf$$yOpenAccess
001017087 909CO $$ooai:juser.fz-juelich.de:1017087$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001017087 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156341$$aForschungszentrum Jülich$$b11$$kFZJ
001017087 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001017087 9141_ $$y2023
001017087 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-09-04
001017087 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-09-04
001017087 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001017087 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-09-04
001017087 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-09-04$$wger
001017087 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-09-04
001017087 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-09-04
001017087 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001017087 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-09-04
001017087 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-09-04
001017087 920__ $$lyes
001017087 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001017087 980__ $$ajournal
001017087 980__ $$aVDB
001017087 980__ $$aUNRESTRICTED
001017087 980__ $$aI:(DE-Juel1)IBI-7-20200312
001017087 9801_ $$aFullTexts