001     1017087
005     20240226075510.0
024 7 _ |a 10.1002/smll.202202492
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-03929
|2 datacite_doi
024 7 _ |a 36228092
|2 pmid
024 7 _ |a WOS:000867936900001
|2 WOS
037 _ _ |a FZJ-2023-03929
082 _ _ |a 620
100 1 _ |a Glueck, David
|0 0000-0003-3983-1277
|b 0
245 _ _ |a Electroneutral Polymer Nanodiscs Enable Interference‐Free Probing of Membrane Proteins in a Lipid‐Bilayer Environment
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1697550300_28851
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral—yet water-soluble—polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein–lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Grethen, Anne
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Das, Manabendra
|0 0000-0003-3690-3183
|b 2
700 1 _ |a Mmeka, Ogochukwu Patricia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Patallo, Eugenio Pérez
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Meister, Annette
|0 0000-0003-1668-4382
|b 5
700 1 _ |a Rajender, Ritu
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kins, Stefan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Räschle, Markus
|0 0000-0002-6737-7203
|b 8
700 1 _ |a Victor, Julian
|b 9
700 1 _ |a Chu, Ci
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Etzkorn, Manuel
|0 P:(DE-Juel1)156341
|b 11
700 1 _ |a Köck, Zoe
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Bernhard, Frank
|0 0000-0002-4860-1783
|b 13
700 1 _ |a Babalola, Jonathan Oyebamiji
|0 0000-0002-1407-6677
|b 14
700 1 _ |a Vargas, Carolyn
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Keller, Sandro
|0 0000-0001-5469-8772
|b 16
|e Corresponding author
773 _ _ |a 10.1002/smll.202202492
|g Vol. 18, no. 47, p. 2202492
|0 PERI:(DE-600)2168935-0
|n 47
|p 2202492
|t Small
|v 18
|y 2022
|x 1613-6810
856 4 _ |u https://juser.fz-juelich.de/record/1017087/files/Small%20-%202022%20-%20Glueck%20-%20Electroneutral%20Polymer%20Nanodiscs%20Enable%20Interference%E2%80%90Free%20Probing%20of%20Membrane%20Proteins%20in%20a.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1017087
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)156341
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-09-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-09-04
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-09-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-09-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-09-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-09-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21