Home > Publications database > Electroneutral Polymer Nanodiscs Enable Interference‐Free Probing of Membrane Proteins in a Lipid‐Bilayer Environment > print |
001 | 1017087 | ||
005 | 20240226075510.0 | ||
024 | 7 | _ | |a 10.1002/smll.202202492 |2 doi |
024 | 7 | _ | |a 1613-6810 |2 ISSN |
024 | 7 | _ | |a 1613-6829 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-03929 |2 datacite_doi |
024 | 7 | _ | |a 36228092 |2 pmid |
024 | 7 | _ | |a WOS:000867936900001 |2 WOS |
037 | _ | _ | |a FZJ-2023-03929 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Glueck, David |0 0000-0003-3983-1277 |b 0 |
245 | _ | _ | |a Electroneutral Polymer Nanodiscs Enable Interference‐Free Probing of Membrane Proteins in a Lipid‐Bilayer Environment |
260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1697550300_28851 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral—yet water-soluble—polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein–lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs. |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Grethen, Anne |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Das, Manabendra |0 0000-0003-3690-3183 |b 2 |
700 | 1 | _ | |a Mmeka, Ogochukwu Patricia |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Patallo, Eugenio Pérez |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Meister, Annette |0 0000-0003-1668-4382 |b 5 |
700 | 1 | _ | |a Rajender, Ritu |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Kins, Stefan |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Räschle, Markus |0 0000-0002-6737-7203 |b 8 |
700 | 1 | _ | |a Victor, Julian |b 9 |
700 | 1 | _ | |a Chu, Ci |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Etzkorn, Manuel |0 P:(DE-Juel1)156341 |b 11 |
700 | 1 | _ | |a Köck, Zoe |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Bernhard, Frank |0 0000-0002-4860-1783 |b 13 |
700 | 1 | _ | |a Babalola, Jonathan Oyebamiji |0 0000-0002-1407-6677 |b 14 |
700 | 1 | _ | |a Vargas, Carolyn |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Keller, Sandro |0 0000-0001-5469-8772 |b 16 |e Corresponding author |
773 | _ | _ | |a 10.1002/smll.202202492 |g Vol. 18, no. 47, p. 2202492 |0 PERI:(DE-600)2168935-0 |n 47 |p 2202492 |t Small |v 18 |y 2022 |x 1613-6810 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1017087/files/Small%20-%202022%20-%20Glueck%20-%20Electroneutral%20Polymer%20Nanodiscs%20Enable%20Interference%E2%80%90Free%20Probing%20of%20Membrane%20Proteins%20in%20a.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1017087 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)156341 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-09-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-09-04 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-09-04 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-09-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-09-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-09-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-09-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-7-20200312 |k IBI-7 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|