001     1017215
005     20240711113611.0
024 7 _ |a 10.1088/1741-4326/acf0d4
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-04026
|2 datacite_doi
024 7 _ |a WOS:001083101200001
|2 WOS
037 _ _ |a FZJ-2023-04026
082 _ _ |a 620
100 1 _ |a Matveev, D.
|0 P:(DE-Juel1)8998
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Tritium removal from JET-ILW after T and D–T experimental campaigns
260 _ _ |a Vienna
|c 2023
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1698215029_21059
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a After the second Deuterium–Tritium Campaign (DTE2) in the JET tokamak with the ITER-Like Wall (ILW) and full tritium campaigns that preceded and followed after the DTE2, a sequence of fuel recovery methods was applied to promote tritium removal from wall components. The sequence started with several days of baking of the main chamber walls at 240 °C and at 320 °C. Subsequently, baking was superimposed with Ion-Cyclotron Wall Conditioning (ICWC) and Glow Discharge Conditioning (GDC) cleaning cycles in deuterium. Diverted plasma operation in deuterium with different strike point configurations, including a Raised Inner Strike Point (RISP) configuration, and with different plasma heating—Ion Cyclotron Resonance Frequency (ICRF) and Neutral Beam Injection (NBI)—concluded the cleaning sequence. Tritium content in plasma and in the pumped gas was monitored throughout the experiment. The applied fuel recovery methods allowed reducing the residual tritium content in deuterium NBI-heated plasmas to about 0.1% as deduced from neutron rate measurements. This value is well below the requirement of 1% set by the maximum 14 MeV fusion neutron budget allocated in the ensuing deuterium plasma campaign. The quantified tritium removal over the course of the experiment was $\left( {13.4 \pm 0.7} \right) \times {10^{22}}$ atoms or $\left( {0.67 \pm 0.03} \right)$ g with ∼58% attributed to baking, ∼12.5% to ICWC, ∼26% to GDC, and ∼3.5% to first low power RISP plasmas. The experimentally estimated amount of removed tritium is in good agreement with long-term tritium accounting by the JET tritium reprocessing plant, in which the unaccounted amount was reduced by $0.71$ g after the cleaning experiment.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Douai, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wauters, T.
|0 P:(DE-Juel1)145890
|b 2
700 1 _ |a Widdowson, A.
|0 0000-0002-6805-8853
|b 3
700 1 _ |a Jepu, I.
|0 0000-0001-8567-3228
|b 4
700 1 _ |a Maslov, M.
|0 0000-0001-8392-4644
|b 5
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 6
700 1 _ |a Dittmar, T.
|0 P:(DE-Juel1)158050
|b 7
700 1 _ |a Monakhov, I.
|0 P:(DE-Juel1)167441
|b 8
700 1 _ |a Jacquet, P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Dumortier, P.
|0 P:(DE-Juel1)130001
|b 10
700 1 _ |a Sheikh, H.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Felton, R.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Lowry, C.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Ciric, D.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Banks, J.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Buckingham, R.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Weisen, H.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Laguardia, L.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Gervasini, G.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a de la Cal, E.
|0 0000-0001-8020-7682
|b 20
700 1 _ |a Delabie, E.
|0 P:(DE-Juel1)129994
|b 21
700 1 _ |a Ghani, Z.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Gaspar, J.
|0 0000-0003-0104-1616
|b 23
700 1 _ |a Romazanov, J.
|0 P:(DE-Juel1)165905
|b 24
700 1 _ |a Groth, M.
|0 P:(DE-Juel1)171218
|b 25
|u fzj
700 1 _ |a Kumpulainen, H.
|0 0000-0003-1301-0497
|b 26
700 1 _ |a Karhunen, J.
|0 P:(DE-Juel1)184375
|b 27
700 1 _ |a Knipe, S.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Aleiferis, S.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Loarer, T.
|0 0000-0002-5688-7988
|b 30
700 1 _ |a Meigs, A.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Noble, C.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Papadopoulos, G.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Pawelec, E.
|0 0000-0003-1333-6331
|b 34
700 1 _ |a Romanelli, S.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Silburn, S.
|0 0000-0002-3111-5113
|b 36
700 1 _ |a Joffrin, E.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Tsitrone, E.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Rimini, F.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Maggi, C. F.
|0 P:(DE-Juel1)169313
|b 40
773 _ _ |a 10.1088/1741-4326/acf0d4
|g Vol. 63, no. 11, p. 112014 -
|0 PERI:(DE-600)2037980-8
|n 11
|p 112014 -
|t Nuclear fusion
|v 63
|y 2023
|x 0029-5515
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1017215/files/Matveev_2023_Nucl._Fusion_63_112014.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1017215/files/pp_Matveev.pdf
909 C O |o oai:juser.fz-juelich.de:1017215
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)8998
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)158050
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130001
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 24
|6 P:(DE-Juel1)165905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)171218
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a TIB: IOP Publishing 2022
|0 PC:(DE-HGF)0107
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2022
|d 2023-08-24
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21