001017615 001__ 1017615 001017615 005__ 20250203103047.0 001017615 0247_ $$2doi$$a10.1039/D3TA04060G 001017615 0247_ $$2ISSN$$a2050-7488 001017615 0247_ $$2ISSN$$a2050-7496 001017615 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-04231 001017615 0247_ $$2WOS$$aWOS:001047520300001 001017615 037__ $$aFZJ-2023-04231 001017615 082__ $$a530 001017615 1001_ $$00000-0002-9197-3216$$aIngber, Tjark T. K.$$b0 001017615 245__ $$aElucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries 001017615 260__ $$aLondon [u.a.]$$bRSC$$c2023 001017615 3367_ $$2DRIVER$$aarticle 001017615 3367_ $$2DataCite$$aOutput Types/Journal article 001017615 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712750689_24401 001017615 3367_ $$2BibTeX$$aARTICLE 001017615 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001017615 3367_ $$00$$2EndNote$$aJournal Article 001017615 500__ $$aUnterstützt durch BMBF Grants: MEET Hi-EnD III” (03XP0258A), “ProLiFest” (03XP0253A) und “AMaLiS” (03XP0125D) 001017615 520__ $$aIn zero-excess lithium metal batteries (ZELMBs), also termed “anode-free” LMBs, Li from the positive electrode is electrodeposited onto a bare current collector instead of the Li metal negative electrode commonly used in LMBs. This enables high theoretical energy density and facile, safe, and low-cost assembly. To tackle coulombic inefficiencies during Li deposition/dissolution, 3D structured current collectors can be used instead of 2D foil materials. This study elucidates the Li deposition behavior in custom-made open-porous Cu micro-foams from nucleation to large scale deposition. For the first time in ZELMBs, surface and sub-surface Li deposits in open-porous 3D materials are compared to deposits on 2D foils using cryogenic focused ion beam scanning electron microscopy (cryo-FIB-SEM). The results highlight that Cu micro-foams can store substantial amounts of dendrite-free Li in their open-porous 3D structure, minimizing detrimental volume changes during Li deposition/dissolution. Electrochemical analyses and simulations reveal that current density distribution over the large surface area of the Cu micro-foams reduces the Li nucleation overvoltage by ≈40%. Also, charge/discharge cycling in ZELMBs shows increases in coulombic efficiency, capacity retention, and cycle life. Overall, this work explains how open-porous Cu micro-foam current collectors improve the Li deposition behavior to boost the cycling characteristics of ZELMBs. 001017615 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001017615 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001017615 7001_ $$00000-0002-9741-2989$$aBela, Marlena M.$$b1 001017615 7001_ $$00009-0003-0948-6916$$aPüttmann, Frederik$$b2 001017615 7001_ $$00000-0001-9870-0766$$aDohmann, Jan F.$$b3 001017615 7001_ $$0P:(DE-Juel1)180777$$aBieker, Peter$$b4 001017615 7001_ $$00000-0002-8468-773X$$aBörner, Markus$$b5 001017615 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6 001017615 7001_ $$0P:(DE-Juel1)195878$$aStan, Marian$$b7$$eCorresponding author$$ufzj 001017615 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D3TA04060G$$gVol. 11, no. 33, p. 17828 - 17840$$n33$$p17828 - 17840$$tJournal of materials chemistry / A$$v11$$x2050-7488$$y2023 001017615 8564_ $$uhttps://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.pdf$$yOpenAccess 001017615 8564_ $$uhttps://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.gif?subformat=icon$$xicon$$yOpenAccess 001017615 8564_ $$uhttps://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001017615 8564_ $$uhttps://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001017615 8564_ $$uhttps://juser.fz-juelich.de/record/1017615/files/Elucidating%20the%20lithium%20deposition%20behavior%20in%20open-porous%20copper%20micro-foam%20negative%20electrodes%20for%20zero-excess%20lithium%20metal%20batteries.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001017615 8767_ $$d2023-12-01$$eHybrid-OA$$jPublish and Read 001017615 909CO $$ooai:juser.fz-juelich.de:1017615$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire 001017615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180777$$aForschungszentrum Jülich$$b4$$kFZJ 001017615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ 001017615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195878$$aForschungszentrum Jülich$$b7$$kFZJ 001017615 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001017615 9141_ $$y2024 001017615 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001017615 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001017615 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 001017615 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021 001017615 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 001017615 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23 001017615 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23 001017615 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23 001017615 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23 001017615 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23 001017615 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2023-08-23 001017615 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001017615 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2023-08-23 001017615 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger 001017615 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23 001017615 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23 001017615 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23 001017615 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001017615 9801_ $$aAPC 001017615 9801_ $$aFullTexts 001017615 980__ $$ajournal 001017615 980__ $$aVDB 001017615 980__ $$aUNRESTRICTED 001017615 980__ $$aI:(DE-Juel1)IEK-12-20141217 001017615 980__ $$aAPC 001017615 981__ $$aI:(DE-Juel1)IMD-4-20141217