Journal Article FZJ-2023-04231

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries

 ;  ;  ;  ;  ;  ;  ;

2023
RSC London ˜[u.a.]œ

Journal of materials chemistry / A 11(33), 17828 - 17840 () [10.1039/D3TA04060G]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: In zero-excess lithium metal batteries (ZELMBs), also termed “anode-free” LMBs, Li from the positive electrode is electrodeposited onto a bare current collector instead of the Li metal negative electrode commonly used in LMBs. This enables high theoretical energy density and facile, safe, and low-cost assembly. To tackle coulombic inefficiencies during Li deposition/dissolution, 3D structured current collectors can be used instead of 2D foil materials. This study elucidates the Li deposition behavior in custom-made open-porous Cu micro-foams from nucleation to large scale deposition. For the first time in ZELMBs, surface and sub-surface Li deposits in open-porous 3D materials are compared to deposits on 2D foils using cryogenic focused ion beam scanning electron microscopy (cryo-FIB-SEM). The results highlight that Cu micro-foams can store substantial amounts of dendrite-free Li in their open-porous 3D structure, minimizing detrimental volume changes during Li deposition/dissolution. Electrochemical analyses and simulations reveal that current density distribution over the large surface area of the Cu micro-foams reduces the Li nucleation overvoltage by ≈40%. Also, charge/discharge cycling in ZELMBs shows increases in coulombic efficiency, capacity retention, and cycle life. Overall, this work explains how open-porous Cu micro-foam current collectors improve the Li deposition behavior to boost the cycling characteristics of ZELMBs.

Classification:

Note: Unterstützt durch BMBF Grants: MEET Hi-EnD III” (03XP0258A), “ProLiFest” (03XP0253A) und “AMaLiS” (03XP0125D)

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 1221 - Fundamentals and Materials (POF4-122) (POF4-122)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 10 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-12
Publications database
Open Access

 Record created 2023-11-03, last modified 2025-02-03


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)