001017752 001__ 1017752
001017752 005__ 20250203103222.0
001017752 0247_ $$2doi$$a10.1016/j.ensm.2023.03.008
001017752 0247_ $$2ISSN$$a2405-8289
001017752 0247_ $$2ISSN$$a2405-8297
001017752 0247_ $$2WOS$$aWOS:000952633500001
001017752 037__ $$aFZJ-2023-04288
001017752 082__ $$a624
001017752 1001_ $$00000-0002-7961-7876$$aKriegler, Johannes$$b0$$eCorresponding author
001017752 245__ $$aDesign, production, and characterization of three-dimensionally-structured oxide-polymer composite cathodes for all-solid-state batteries
001017752 260__ $$aAmsterdam$$bElsevier$$c2023
001017752 3367_ $$2DRIVER$$aarticle
001017752 3367_ $$2DataCite$$aOutput Types/Journal article
001017752 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710328103_3657
001017752 3367_ $$2BibTeX$$aARTICLE
001017752 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001017752 3367_ $$00$$2EndNote$$aJournal Article
001017752 520__ $$aInorganic all-solid-state batteries with oxide electrolytes show improved safety compared to conventional lithium-ion batteries due to the application of a non-flammable solid electrolyte. However, the currently applied production methods are unsuitable for creating oxide composite cathodes with a good interfacial contact between the solid electrolyte and the cathode active material, which limits the accessible discharge capacity. Thus, solid electrolyte matrix-supported all-solid-state batteries, for which a porous scaffold is filled with cathode active material, have recently seen increasing research interest. This publication introduces a scalable production route for a matrix-supported cell concept with a three-dimensionally-structured oxide-based composite cathode. Directed microstructures with different geometries were introduced into NASICON-type Li1.5Al0.5Ti1.5(PO4)3 oxide solid electrolyte layers via laser ablation. The obtained porous scaffold was infiltrated with various cathode slurries containing cathode active material and an ion-conducting polymer electrolyte to fabricate hybrid composite cathodes with an improved electrode-electrolyte interface. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed a high pore filling degree. A promising specific discharge capacity of 120.1 mAh·g−1 was achieved during electrochemical testing of a prototype all-solid-state battery with a LiNi0.6Mn0.2Co0.2O2 composite cathode and a lithium metal anode. Overall, this work serves as a proof-of-concept for the novel, matrix-supported cell design and provides insights into the production processes involved.
001017752 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001017752 536__ $$0G:(BMBF)13XP0184B$$aProFeLi - Produktionstechnik für Festkörperbatterien mit Lithium-Metall-Anode (13XP0184B)$$c13XP0184B$$x1
001017752 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001017752 7001_ $$0P:(DE-HGF)0$$aJaimez-Farnham, Elena$$b1
001017752 7001_ $$0P:(DE-HGF)0$$aScheller, Maximilian$$b2
001017752 7001_ $$0P:(DE-Juel1)156509$$aDashjav, Enkhtsetseg$$b3$$ufzj
001017752 7001_ $$0P:(DE-HGF)0$$aKonwitschny, Fabian$$b4
001017752 7001_ $$0P:(DE-HGF)0$$aWach, Lovis$$b5
001017752 7001_ $$0P:(DE-HGF)0$$aHille, Lucas$$b6
001017752 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b7$$ufzj
001017752 7001_ $$0P:(DE-HGF)0$$aZaeh, Michael F.$$b8
001017752 773__ $$0PERI:(DE-600)2841602-8$$a10.1016/j.ensm.2023.03.008$$gVol. 57, p. 607 - 617$$p607 - 617$$tEnergy storage materials$$v57$$x2405-8289$$y2023
001017752 8564_ $$uhttps://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.pdf$$yRestricted
001017752 8564_ $$uhttps://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.gif?subformat=icon$$xicon$$yRestricted
001017752 8564_ $$uhttps://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001017752 8564_ $$uhttps://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
001017752 8564_ $$uhttps://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
001017752 909CO $$ooai:juser.fz-juelich.de:1017752$$pVDB
001017752 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich$$b3$$kFZJ
001017752 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b7$$kFZJ
001017752 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001017752 9141_ $$y2024
001017752 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001017752 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001017752 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001017752 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001017752 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001017752 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27
001017752 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001017752 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY STORAGE MATER : 2022$$d2023-10-27
001017752 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001017752 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bENERGY STORAGE MATER : 2022$$d2023-10-27
001017752 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001017752 980__ $$ajournal
001017752 980__ $$aVDB
001017752 980__ $$aI:(DE-Juel1)IEK-1-20101013
001017752 980__ $$aUNRESTRICTED
001017752 981__ $$aI:(DE-Juel1)IMD-2-20101013