001     1017752
005     20250203103222.0
024 7 _ |a 10.1016/j.ensm.2023.03.008
|2 doi
024 7 _ |a 2405-8289
|2 ISSN
024 7 _ |a 2405-8297
|2 ISSN
024 7 _ |a WOS:000952633500001
|2 WOS
037 _ _ |a FZJ-2023-04288
082 _ _ |a 624
100 1 _ |a Kriegler, Johannes
|0 0000-0002-7961-7876
|b 0
|e Corresponding author
245 _ _ |a Design, production, and characterization of three-dimensionally-structured oxide-polymer composite cathodes for all-solid-state batteries
260 _ _ |a Amsterdam
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710328103_3657
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Inorganic all-solid-state batteries with oxide electrolytes show improved safety compared to conventional lithium-ion batteries due to the application of a non-flammable solid electrolyte. However, the currently applied production methods are unsuitable for creating oxide composite cathodes with a good interfacial contact between the solid electrolyte and the cathode active material, which limits the accessible discharge capacity. Thus, solid electrolyte matrix-supported all-solid-state batteries, for which a porous scaffold is filled with cathode active material, have recently seen increasing research interest. This publication introduces a scalable production route for a matrix-supported cell concept with a three-dimensionally-structured oxide-based composite cathode. Directed microstructures with different geometries were introduced into NASICON-type Li1.5Al0.5Ti1.5(PO4)3 oxide solid electrolyte layers via laser ablation. The obtained porous scaffold was infiltrated with various cathode slurries containing cathode active material and an ion-conducting polymer electrolyte to fabricate hybrid composite cathodes with an improved electrode-electrolyte interface. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed a high pore filling degree. A promising specific discharge capacity of 120.1 mAh·g−1 was achieved during electrochemical testing of a prototype all-solid-state battery with a LiNi0.6Mn0.2Co0.2O2 composite cathode and a lithium metal anode. Overall, this work serves as a proof-of-concept for the novel, matrix-supported cell design and provides insights into the production processes involved.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
536 _ _ |a ProFeLi - Produktionstechnik für Festkörperbatterien mit Lithium-Metall-Anode (13XP0184B)
|0 G:(BMBF)13XP0184B
|c 13XP0184B
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jaimez-Farnham, Elena
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Scheller, Maximilian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dashjav, Enkhtsetseg
|0 P:(DE-Juel1)156509
|b 3
|u fzj
700 1 _ |a Konwitschny, Fabian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wach, Lovis
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hille, Lucas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 7
|u fzj
700 1 _ |a Zaeh, Michael F.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1016/j.ensm.2023.03.008
|g Vol. 57, p. 607 - 617
|0 PERI:(DE-600)2841602-8
|p 607 - 617
|t Energy storage materials
|v 57
|y 2023
|x 2405-8289
856 4 _ |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1017752
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY STORAGE MATER : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ENERGY STORAGE MATER : 2022
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21