Hauptseite > Publikationsdatenbank > Design, production, and characterization of three-dimensionally-structured oxide-polymer composite cathodes for all-solid-state batteries > print |
001 | 1017752 | ||
005 | 20250203103222.0 | ||
024 | 7 | _ | |a 10.1016/j.ensm.2023.03.008 |2 doi |
024 | 7 | _ | |a 2405-8289 |2 ISSN |
024 | 7 | _ | |a 2405-8297 |2 ISSN |
024 | 7 | _ | |a WOS:000952633500001 |2 WOS |
037 | _ | _ | |a FZJ-2023-04288 |
082 | _ | _ | |a 624 |
100 | 1 | _ | |a Kriegler, Johannes |0 0000-0002-7961-7876 |b 0 |e Corresponding author |
245 | _ | _ | |a Design, production, and characterization of three-dimensionally-structured oxide-polymer composite cathodes for all-solid-state batteries |
260 | _ | _ | |a Amsterdam |c 2023 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1710328103_3657 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Inorganic all-solid-state batteries with oxide electrolytes show improved safety compared to conventional lithium-ion batteries due to the application of a non-flammable solid electrolyte. However, the currently applied production methods are unsuitable for creating oxide composite cathodes with a good interfacial contact between the solid electrolyte and the cathode active material, which limits the accessible discharge capacity. Thus, solid electrolyte matrix-supported all-solid-state batteries, for which a porous scaffold is filled with cathode active material, have recently seen increasing research interest. This publication introduces a scalable production route for a matrix-supported cell concept with a three-dimensionally-structured oxide-based composite cathode. Directed microstructures with different geometries were introduced into NASICON-type Li1.5Al0.5Ti1.5(PO4)3 oxide solid electrolyte layers via laser ablation. The obtained porous scaffold was infiltrated with various cathode slurries containing cathode active material and an ion-conducting polymer electrolyte to fabricate hybrid composite cathodes with an improved electrode-electrolyte interface. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed a high pore filling degree. A promising specific discharge capacity of 120.1 mAh·g−1 was achieved during electrochemical testing of a prototype all-solid-state battery with a LiNi0.6Mn0.2Co0.2O2 composite cathode and a lithium metal anode. Overall, this work serves as a proof-of-concept for the novel, matrix-supported cell design and provides insights into the production processes involved. |
536 | _ | _ | |a 1222 - Components and Cells (POF4-122) |0 G:(DE-HGF)POF4-1222 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a ProFeLi - Produktionstechnik für Festkörperbatterien mit Lithium-Metall-Anode (13XP0184B) |0 G:(BMBF)13XP0184B |c 13XP0184B |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Jaimez-Farnham, Elena |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Scheller, Maximilian |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Dashjav, Enkhtsetseg |0 P:(DE-Juel1)156509 |b 3 |u fzj |
700 | 1 | _ | |a Konwitschny, Fabian |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Wach, Lovis |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Hille, Lucas |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Tietz, Frank |0 P:(DE-Juel1)129667 |b 7 |u fzj |
700 | 1 | _ | |a Zaeh, Michael F. |0 P:(DE-HGF)0 |b 8 |
773 | _ | _ | |a 10.1016/j.ensm.2023.03.008 |g Vol. 57, p. 607 - 617 |0 PERI:(DE-600)2841602-8 |p 607 - 617 |t Energy storage materials |v 57 |y 2023 |x 2405-8289 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1017752/files/1-s2.0-S2405829723001095-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1017752 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)156509 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)129667 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1222 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENERGY STORAGE MATER : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b ENERGY STORAGE MATER : 2022 |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|