Home > Publications database > Memristor-based hardware and algorithms for higher-order Hopfield optimization solver outperforming quadratic Ising machines > print |
001 | 1017905 | ||
005 | 20250203103127.0 | ||
024 | 7 | _ | |a 10.48550/ARXIV.2311.01171 |2 doi |
024 | 7 | _ | |a 10.48550/arXiv.2311.01171 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-04417 |2 datacite_doi |
037 | _ | _ | |a FZJ-2023-04417 |
041 | _ | _ | |a English |
088 | _ | _ | |a 2311.01171 |2 arXiv |
100 | 1 | _ | |a Hizzani, Mohammad |0 P:(DE-Juel1)190961 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Memristor-based hardware and algorithms for higher-order Hopfield optimization solver outperforming quadratic Ising machines |
260 | _ | _ | |c 2023 |b arXiv |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1718095808_30832 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a Ising solvers offer a promising physics-based approach to tackle the challenging class of combinatorial optimization problems. However, typical solvers operate in a quadratic energy space, having only pair-wise coupling elements which already dominate area and energy. We show that such quadratization can cause severe problems: increased dimensionality, a rugged search landscape, and misalignment with the original objective function. Here, we design and quantify a higher-order Hopfield optimization solver, with 28nm CMOS technology and memristive couplings for lower area and energy computations. We combine algorithmic and circuit analysis to show quantitative advantages over quadratic Ising Machines (IM)s, yielding 48x and 72x reduction in time-to-solution (TTS) and energy-to-solution (ETS) respectively for Boolean satisfiability problems of 150 variables, with favorable scaling. |
536 | _ | _ | |a 5312 - Devices and Applications (POF4-531) |0 G:(DE-HGF)POF4-5312 |c POF4-531 |f POF IV |x 0 |
536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |f POF IV |x 1 |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 2 |
536 | _ | _ | |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K) |0 G:(DE-82)BMBF-16ME0398K |c BMBF-16ME0398K |x 3 |
536 | _ | _ | |a Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K) |0 G:(BMBF)16ES1133K |c 16ES1133K |x 4 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a Emerging Technologies (cs.ET) |2 Other |
650 | _ | 7 | |a Hardware Architecture (cs.AR) |2 Other |
650 | _ | 7 | |a FOS: Computer and information sciences |2 Other |
650 | 2 | 7 | |a Others |0 V:(DE-MLZ)SciArea-250 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Heittmann, Arne |0 P:(DE-Juel1)174220 |b 1 |u fzj |
700 | 1 | _ | |a Hutchinson, George |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Dobrynin, Dmitri |0 P:(DE-Juel1)188725 |b 3 |u fzj |
700 | 1 | _ | |a Van Vaerenbergh, Thomas |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Bhattacharya, Tinish |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Renaudineau, Adrien |0 P:(DE-Juel1)198908 |b 6 |u fzj |
700 | 1 | _ | |a Strukov, Dmitri |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Strachan, John Paul |0 P:(DE-Juel1)188145 |b 8 |u fzj |
773 | _ | _ | |a 10.48550/arXiv.2311.01171 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1017905/files/QUBOvsPUBO.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1017905 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190961 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)174220 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)188725 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)198908 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)188145 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-531 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Functionality by Information-Guided Design: From Molecular Concepts to Materials |9 G:(DE-HGF)POF4-5312 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 2 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-14-20210412 |k PGI-14 |l Neuromorphic Compute Nodes |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-14-20210412 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|