Home > Workflow collections > Publication Charges > Tailoring the Preformed Solid Electrolyte Interphase in Lithium Metal Batteries: Impact of Fluoroethylene Carbonate > print |
001 | 1018618 | ||
005 | 20240712113058.0 | ||
024 | 7 | _ | |a 10.1021/acsami.3c12797 |2 doi |
024 | 7 | _ | |a 1944-8244 |2 ISSN |
024 | 7 | _ | |a 1944-8252 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-04933 |2 datacite_doi |
024 | 7 | _ | |a 37936378 |2 pmid |
024 | 7 | _ | |a WOS:001108455000001 |2 WOS |
037 | _ | _ | |a FZJ-2023-04933 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Weintz, Dominik |0 P:(DE-Juel1)190619 |b 0 |e First author |u fzj |
245 | _ | _ | |a Tailoring the Preformed Solid Electrolyte Interphase in Lithium Metal Batteries: Impact of Fluoroethylene Carbonate |
260 | _ | _ | |a Washington, DC |c 2023 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1705295569_12154 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The film-forming electrolyte additive/co-solvent fluoroethylene carbonate (FEC) can play a crucial role in enabling high-energy-density lithium metal batteries (LMBs). Its beneficial impact on homogeneous and compact lithium (Li) deposition morphology leads to improved Coulombic efficiency (CE) of the resulting cell chemistry during galvanostatic cycling and consequently an extended cell lifetime. Herein, the impact of this promising additive/co-solvent on selected properties of LMBs is systematically investigated by utilizing an in-house developed lithium pretreatment method. The results reveal that as long as FEC is present in the organic carbonate-based electrolyte, a dense mosaic-like lithium morphology of Li deposits with a reduced polarization of only 20 mV combined with a prolonged cycle life is achieved. When the pretreated Li electrodes with an FEC-derived preformed SEI (pSEI) are galvanostatically cycled with the FEC-free electrolyte, the described benefits induced by the additive are not observable. These results underline that the favorable properties of the FEC-derived SEI are beneficial only if there is unreacted FEC in the electrolyte formulation left to constantly reform the interphase layer, which is especially important for anodes with high-volume changes and dynamic surfaces like lithium metal and lithiated silicon. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a BMBF-13XP0511B - Lillint-2 Thermodynamic and kinetic stability of the Lithium-Liquid Electrolyte Interface (BMBF-13XP0511B) |0 G:(DE-Juel1)BMBF-13XP0511B |c BMBF-13XP0511B |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Kühn, Sebastian P. |0 P:(DE-Juel1)179440 |b 1 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 2 |u fzj |
700 | 1 | _ | |a Cekic-Laskovic, Isidora |0 P:(DE-Juel1)171204 |b 3 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1021/acsami.3c12797 |g Vol. 15, no. 46, p. 53526 - 53532 |0 PERI:(DE-600)2467494-1 |n 46 |p 53526 - 53532 |t ACS applied materials & interfaces |v 15 |y 2023 |x 1944-8244 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1018618/files/weintz-et-al-2023-tailoring-the-preformed-solid-electrolyte-interphase-in-lithium-metal-batteries-impact-of.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1018618/files/weintz-et-al-2023-tailoring-the-preformed-solid-electrolyte-interphase-in-lithium-metal-batteries-impact-of.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1018618/files/weintz-et-al-2023-tailoring-the-preformed-solid-electrolyte-interphase-in-lithium-metal-batteries-impact-of.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1018618/files/weintz-et-al-2023-tailoring-the-preformed-solid-electrolyte-interphase-in-lithium-metal-batteries-impact-of.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1018618/files/weintz-et-al-2023-tailoring-the-preformed-solid-electrolyte-interphase-in-lithium-metal-batteries-impact-of.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1018618 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190619 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)179440 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)166130 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171204 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a Helmholtz: American Chemical Society 01/01/2023 |0 PC:(DE-HGF)0122 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-25 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-25 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|