001019311 001__ 1019311
001019311 005__ 20231220201928.0
001019311 037__ $$aFZJ-2023-05285
001019311 041__ $$aEnglish
001019311 1001_ $$0P:(DE-Juel1)185906$$aMontanez Huaman, Liz Margarita$$b0$$eCorresponding author$$ufzj
001019311 1112_ $$aSol-SkyMag 2023$$cSan Sebastian$$d2023-06-19 - 2023-06-23$$gSol-SkyMag 2023$$wSpain
001019311 245__ $$aROOM TEMPERATURE INVESTIGATION OF SKYRMION- HOSTING PT/CO/TA MULTILAYERS
001019311 260__ $$c2023
001019311 3367_ $$033$$2EndNote$$aConference Paper
001019311 3367_ $$2DataCite$$aOther
001019311 3367_ $$2BibTeX$$aINPROCEEDINGS
001019311 3367_ $$2DRIVER$$aconferenceObject
001019311 3367_ $$2ORCID$$aLECTURE_SPEECH
001019311 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1703049769_12022$$xAfter Call
001019311 520__ $$aMultilayers composed of heavy metals and ferromagnetic materials with strong perpendicular anisotropy are potential candidates for magnetic memory applications [1,2]. In particular, magnetic skyrmions may enable ultra-dense storage devices due to the extremely low spin currents needed to move/manipulated them [2]. Skyrmions emerge from the competition between the Dzyaloshinskii–Moriya interaction and exchange interactions generated at the interface of thin ferromagnetic layers and heavy metals with large spin-orbit coupling [3]. Pt/Co-based multilayers generally exhibit worm domains, which can nucleate into skyrmions through breaking/nucleation processes [4]. Recent studies have demonstrated the nucleation of skyrmions by varying external magnetic field, temperature, and current in sputtered Pt/Co/Ta multilayers [4,5].In this work, [Pt/Co/Ta]x multilayers with perpendicular magnetic anisotropy were grown by molecular beam epitaxy. We have demonstrated the feasibility of manipulating magnetic domains in our multilayers by changing the number of repetitions x and the Co layer thickness between 5 Å to 21 Å. Using magnetic force microscopy (MFM), we observed worm domains or stripe domains. These domains can be broken into skyrmions, by applying an out- of-plane field or into stripe domains by applying in-plane fields. We achieved partially ordered skyrmions at a low external field of ~38 mT for the multilayer with a cobalt thickness of 17 Å (see Figure 1). Furthermore, isolated skyrmions in this multilayer remain even after the external magnetic field has been removed.References[1] A. Fert and V. Sampai (2013) Nat. Nanotechnol. 8, 152–156[2] C Wang C, Seinige H. and Tsoi M. (2013), J. Phys. D: Appl. Phys. 46, 285001[3] Xichao Zhang X., Zhou Y., Song K.M., Park T.E., Xia J., Ezawa M., Liu X., Zhao W., Zhao G. and Woo S. (2020), J. Phys. Condens. Matter 32, 143001[4] Ma M., Ang C., Li Y., Pan Z., Gan W., Lew W.S. and Ma F. (2020), J. Appl. Phys. 127, 223901[5] Brandao J., Dugato D.A., Puydinger dos Santos M.V., Berón F. and Cesar J.C. (2022), Appl. Surf. Sci. 585, 152598
001019311 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001019311 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001019311 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
001019311 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
001019311 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x1
001019311 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0
001019311 7001_ $$0P:(DE-HGF)0$$aAhrens, Valentin$$b1
001019311 7001_ $$0P:(DE-HGF)0$$aBecherer, Markus$$b2
001019311 7001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b3$$eLast author$$ufzj
001019311 909CO $$ooai:juser.fz-juelich.de:1019311$$pVDB:MLZ$$pVDB
001019311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185906$$aForschungszentrum Jülich$$b0$$kFZJ
001019311 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b3$$kFZJ
001019311 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001019311 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001019311 9141_ $$y2023
001019311 920__ $$lyes
001019311 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
001019311 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
001019311 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
001019311 980__ $$aconf
001019311 980__ $$aVDB
001019311 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001019311 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001019311 980__ $$aI:(DE-588b)4597118-3
001019311 980__ $$aUNRESTRICTED