Hauptseite > Publikationsdatenbank > ROOM TEMPERATURE INVESTIGATION OF SKYRMION- HOSTING PT/CO/TA MULTILAYERS > print |
001 | 1019311 | ||
005 | 20231220201928.0 | ||
037 | _ | _ | |a FZJ-2023-05285 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Montanez Huaman, Liz Margarita |0 P:(DE-Juel1)185906 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a Sol-SkyMag 2023 |g Sol-SkyMag 2023 |c San Sebastian |d 2023-06-19 - 2023-06-23 |w Spain |
245 | _ | _ | |a ROOM TEMPERATURE INVESTIGATION OF SKYRMION- HOSTING PT/CO/TA MULTILAYERS |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1703049769_12022 |2 PUB:(DE-HGF) |x After Call |
520 | _ | _ | |a Multilayers composed of heavy metals and ferromagnetic materials with strong perpendicular anisotropy are potential candidates for magnetic memory applications [1,2]. In particular, magnetic skyrmions may enable ultra-dense storage devices due to the extremely low spin currents needed to move/manipulated them [2]. Skyrmions emerge from the competition between the Dzyaloshinskii–Moriya interaction and exchange interactions generated at the interface of thin ferromagnetic layers and heavy metals with large spin-orbit coupling [3]. Pt/Co-based multilayers generally exhibit worm domains, which can nucleate into skyrmions through breaking/nucleation processes [4]. Recent studies have demonstrated the nucleation of skyrmions by varying external magnetic field, temperature, and current in sputtered Pt/Co/Ta multilayers [4,5].In this work, [Pt/Co/Ta]x multilayers with perpendicular magnetic anisotropy were grown by molecular beam epitaxy. We have demonstrated the feasibility of manipulating magnetic domains in our multilayers by changing the number of repetitions x and the Co layer thickness between 5 Å to 21 Å. Using magnetic force microscopy (MFM), we observed worm domains or stripe domains. These domains can be broken into skyrmions, by applying an out- of-plane field or into stripe domains by applying in-plane fields. We achieved partially ordered skyrmions at a low external field of ~38 mT for the multilayer with a cobalt thickness of 17 Å (see Figure 1). Furthermore, isolated skyrmions in this multilayer remain even after the external magnetic field has been removed.References[1] A. Fert and V. Sampai (2013) Nat. Nanotechnol. 8, 152–156[2] C Wang C, Seinige H. and Tsoi M. (2013), J. Phys. D: Appl. Phys. 46, 285001[3] Xichao Zhang X., Zhou Y., Song K.M., Park T.E., Xia J., Ezawa M., Liu X., Zhao W., Zhao G. and Woo S. (2020), J. Phys. Condens. Matter 32, 143001[4] Ma M., Ang C., Li Y., Pan Z., Gan W., Lew W.S. and Ma F. (2020), J. Appl. Phys. 127, 223901[5] Brandao J., Dugato D.A., Puydinger dos Santos M.V., Berón F. and Cesar J.C. (2022), Appl. Surf. Sci. 585, 152598 |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 0 |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 1 |
650 | 2 | 7 | |a Magnetism |0 V:(DE-MLZ)SciArea-170 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Magnetic Materials |0 V:(DE-MLZ)GC-1604-2016 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 1 |
693 | _ | _ | |0 EXP:(DE-MLZ)MBE-MLZ-20151210 |5 EXP:(DE-MLZ)MBE-MLZ-20151210 |e MBE-MLZ: Molecular Beam Epitaxy at MLZ |x 0 |
700 | 1 | _ | |a Ahrens, Valentin |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Becherer, Markus |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Pütter, Sabine |0 P:(DE-Juel1)142052 |b 3 |e Last author |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:1019311 |p VDB:MLZ |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)185906 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)142052 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 1 |
914 | 1 | _ | |y 2023 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-4-20201012 |k JCNS-4 |l JCNS-4 |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 1 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 2 |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-4-20201012 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|