001019323 001__ 1019323 001019323 005__ 20250204113741.0 001019323 0247_ $$2doi$$a10.1002/aenm.202303568 001019323 0247_ $$2ISSN$$a1614-6832 001019323 0247_ $$2ISSN$$a1614-6840 001019323 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05297 001019323 0247_ $$2WOS$$aWOS:001122818800001 001019323 037__ $$aFZJ-2023-05297 001019323 041__ $$aEnglish 001019323 082__ $$a050 001019323 1001_ $$0P:(DE-Juel1)190810$$aWeiling, Matthias$$b0 001019323 245__ $$aMechanistic Understanding of Additive Reductive Degradation and SEI Formation in High‐Voltage NMC811||SiO x ‐Containing Cells via Operando ATR‐FTIR Spectroscopy 001019323 260__ $$aWeinheim$$bWiley-VCH$$c2024 001019323 3367_ $$2DRIVER$$aarticle 001019323 3367_ $$2DataCite$$aOutput Types/Journal article 001019323 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706859939_29240 001019323 3367_ $$2BibTeX$$aARTICLE 001019323 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001019323 3367_ $$00$$2EndNote$$aJournal Article 001019323 520__ $$aThe implementation of silicon (Si)-containing negative electrodes is widely discussed as an approach to increase the specific capacity of lithium-ion batteries. However, challenges caused by severe volume changes and continuous (re-)formation of the solid-electrolyte interphase (SEI) on Si need to be overcome. The volume changes lead to electrolyte consumption and active lithium loss, decaying the cell performance and cycle life. Herein, the additive 2 sulfobenzoic acid anhydride (2 SBA) is utilized as an SEI-forming electrolyte additive for SiOx-containing anodes. The addition of 2 SBA to a state-of-the-art carbonate-based electrolyte in high-voltage NMC811||AG+20% SiOx pouch cells leads to improved electrochemical performance, resulting in a doubled cell cycle life. The origin of the enhanced cell performance is mechanistically investigated by developing an advanced experimental technique based on operando attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. The operando ATR-FTIR spectroscopy results elucidate the degradation mechanism via anhydride ring-opening reactions after electrochemical reduction on the anode surface. Additionally, ion chromatography conductivity detection mass spectrometry, scanning electron microscopy, energy dispersive X-ray analysis, and quantum chemistry calculations are employed to further elucidate the working mechanisms of the additive and its degradation products. 001019323 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001019323 536__ $$0G:(BMBF)13XP5129$$aElektrolytformulierungen für Lithiumbatterien der nächsten Generation mit großer Energiedichte und hoher Beständigkeit (13XP5129)$$c13XP5129$$x1 001019323 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001019323 7001_ $$0P:(DE-HGF)0$$aLechtenfeld, Christian$$b1 001019323 7001_ $$0P:(DE-Juel1)188450$$aPfeiffer, Felix$$b2 001019323 7001_ $$0P:(DE-HGF)0$$aFrankenstein, Lars$$b3 001019323 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b4 001019323 7001_ $$0P:(DE-Juel1)199048$$aWang, Jian-Fen$$b5$$ufzj 001019323 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b6 001019323 7001_ $$00000-0002-2754-6623$$aBaghernejad, Masoud$$b7$$eCorresponding author 001019323 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202303568$$gp. 2303568$$n5$$p2303568$$tAdvanced energy materials$$v14$$x1614-6832$$y2024 001019323 8564_ $$uhttps://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.pdf$$yOpenAccess 001019323 8564_ $$uhttps://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.gif?subformat=icon$$xicon$$yOpenAccess 001019323 8564_ $$uhttps://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001019323 8564_ $$uhttps://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001019323 8564_ $$uhttps://juser.fz-juelich.de/record/1019323/files/Advanced%20Energy%20Materials%20-%202023%20-%20Weiling%20-%20Mechanistic%20Understanding%20of%20Additive%20Reductive%20Degradation%20and%20SEI%20Formation.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001019323 8767_ $$d2023-12-18$$eHybrid-OA$$jDEAL 001019323 909CO $$ooai:juser.fz-juelich.de:1019323$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 001019323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190810$$aForschungszentrum Jülich$$b0$$kFZJ 001019323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188450$$aForschungszentrum Jülich$$b2$$kFZJ 001019323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b4$$kFZJ 001019323 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199048$$aForschungszentrum Jülich$$b5$$kFZJ 001019323 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-2754-6623$$aForschungszentrum Jülich$$b7$$kFZJ 001019323 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001019323 9141_ $$y2024 001019323 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001019323 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001019323 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 001019323 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019 001019323 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26 001019323 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001019323 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-26$$wger 001019323 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26 001019323 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001019323 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12 001019323 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12 001019323 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12 001019323 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12 001019323 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12 001019323 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12 001019323 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2024-12-12 001019323 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12 001019323 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12 001019323 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2024-12-12 001019323 920__ $$lyes 001019323 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001019323 9801_ $$aAPC 001019323 9801_ $$aFullTexts 001019323 980__ $$ajournal 001019323 980__ $$aVDB 001019323 980__ $$aUNRESTRICTED 001019323 980__ $$aI:(DE-Juel1)IEK-12-20141217 001019323 980__ $$aAPC 001019323 981__ $$aI:(DE-Juel1)IMD-4-20141217