001019405 001__ 1019405
001019405 005__ 20240709082027.0
001019405 0247_ $$2doi$$a10.1039/D3CP01236K
001019405 0247_ $$2ISSN$$a1463-9076
001019405 0247_ $$2ISSN$$a1463-9084
001019405 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05365
001019405 0247_ $$2pmid$$a37465859
001019405 0247_ $$2WOS$$aWOS:001031236300001
001019405 037__ $$aFZJ-2023-05365
001019405 082__ $$a540
001019405 1001_ $$00009-0001-2312-5442$$aMaiti, Moumita$$b0
001019405 245__ $$aMechanistic understanding of the correlation between structure and dynamics of liquid carbonate electrolytes: impact of polarization
001019405 260__ $$aCambridge$$bRSC Publ.$$c2023
001019405 3367_ $$2DRIVER$$aarticle
001019405 3367_ $$2DataCite$$aOutput Types/Journal article
001019405 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705055590_32018
001019405 3367_ $$2BibTeX$$aARTICLE
001019405 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019405 3367_ $$00$$2EndNote$$aJournal Article
001019405 520__ $$aLiquid electrolyte design and modelling is an essential part of the development of improved lithium ion batteries. For mixed organic carbonates (ethylene carbonate (EC) and ethyl–methyl carbonate (EMC) mixtures)-based electrolytes with LiPF6 as salt, we have compared a polarizable force field with the standard non-polarizable force field with and without charge rescaling to model the structural and dynamic properties. The result of our molecular dynamics simulations shows that both polarizable and non-polarizable force fields have similar structural factors, which are also in agreement with X-ray diffraction experimental results. In contrast, structural differences are observed for the lithium neighborhood, while the lithium–anion neighbourhood is much more pronounced for the polarizable force field. Comparison of EC/EMC coordination statistics with Fourier transformed infrared spectroscopy (FTIR) shows the best agreement for the polarizable force field. Also for transport quantities such as ionic conductivities, transference numbers, and viscosities, the agreement with the polarizable force field is by far better for a large range of salt concentrations and EC[thin space (1/6-em)]:[thin space (1/6-em)]EMC ratios. In contrast, for the non-polarizable variants, the dynamics are largely underestimated. The excellent performance of the polarizable force field is explored in different ways to pave the way to a realistic description of the structure–dynamics relationships for a wide range of salt and solvent compositions for this standard electrolyte. In particular, we can characterize the distinct correlation terms between like and unlike ions, relate them to structural properties, and explore to which degree the transport in this electrolyte is mass or charge limited.
001019405 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001019405 536__ $$0G:(EU-Grant)957189$$aBIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189)$$c957189$$fH2020-LC-BAT-2020-3$$x1
001019405 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019405 7001_ $$0P:(DE-HGF)0$$aKrishnamoorthy, Anand Narayanan$$b1
001019405 7001_ $$0P:(DE-Juel1)187475$$aMabrouk, Youssef$$b2$$ufzj
001019405 7001_ $$00000-0001-6798-9704$$aMozhzhukhina, Nataliia$$b3
001019405 7001_ $$00000-0003-4414-9504$$aMatic, Aleksandar$$b4
001019405 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b5
001019405 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b6
001019405 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D3CP01236K$$gVol. 25, no. 30, p. 20350 - 20364$$n30$$p20350 - 20364$$tPhysical chemistry, chemical physics$$v25$$x1463-9076$$y2023
001019405 8564_ $$uhttps://juser.fz-juelich.de/record/1019405/files/elec.pdf$$yPublished on 2023-07-11. Available in OpenAccess from 2024-07-11.
001019405 8564_ $$uhttps://juser.fz-juelich.de/record/1019405/files/elec.gif?subformat=icon$$xicon$$yPublished on 2023-07-11. Available in OpenAccess from 2024-07-11.
001019405 8564_ $$uhttps://juser.fz-juelich.de/record/1019405/files/elec.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2023-07-11. Available in OpenAccess from 2024-07-11.
001019405 8564_ $$uhttps://juser.fz-juelich.de/record/1019405/files/elec.jpg?subformat=icon-180$$xicon-180$$yPublished on 2023-07-11. Available in OpenAccess from 2024-07-11.
001019405 8564_ $$uhttps://juser.fz-juelich.de/record/1019405/files/elec.jpg?subformat=icon-640$$xicon-640$$yPublished on 2023-07-11. Available in OpenAccess from 2024-07-11.
001019405 909CO $$ooai:juser.fz-juelich.de:1019405$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001019405 9101_ $$0I:(DE-HGF)0$$60009-0001-2312-5442$$aExternal Institute$$b0$$kExtern
001019405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001019405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187475$$aForschungszentrum Jülich$$b2$$kFZJ
001019405 9101_ $$0I:(DE-HGF)0$$60000-0001-6798-9704$$aExternal Institute$$b3$$kExtern
001019405 9101_ $$0I:(DE-HGF)0$$60000-0003-4414-9504$$aExternal Institute$$b4$$kExtern
001019405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b5$$kFZJ
001019405 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b6$$kFZJ
001019405 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001019405 9141_ $$y2023
001019405 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001019405 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001019405 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001019405 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2023-10-21
001019405 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001019405 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001019405 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001019405 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001019405 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger
001019405 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001019405 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001019405 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001019405 9801_ $$aFullTexts
001019405 980__ $$ajournal
001019405 980__ $$aVDB
001019405 980__ $$aUNRESTRICTED
001019405 980__ $$aI:(DE-Juel1)IEK-12-20141217
001019405 981__ $$aI:(DE-Juel1)IMD-4-20141217