Journal Article FZJ-2023-05365

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mechanistic understanding of the correlation between structure and dynamics of liquid carbonate electrolytes: impact of polarization

 ;  ;  ;  ;  ;  ;

2023
RSC Publ. Cambridge

Physical chemistry, chemical physics 25(30), 20350 - 20364 () [10.1039/D3CP01236K]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Liquid electrolyte design and modelling is an essential part of the development of improved lithium ion batteries. For mixed organic carbonates (ethylene carbonate (EC) and ethyl–methyl carbonate (EMC) mixtures)-based electrolytes with LiPF6 as salt, we have compared a polarizable force field with the standard non-polarizable force field with and without charge rescaling to model the structural and dynamic properties. The result of our molecular dynamics simulations shows that both polarizable and non-polarizable force fields have similar structural factors, which are also in agreement with X-ray diffraction experimental results. In contrast, structural differences are observed for the lithium neighborhood, while the lithium–anion neighbourhood is much more pronounced for the polarizable force field. Comparison of EC/EMC coordination statistics with Fourier transformed infrared spectroscopy (FTIR) shows the best agreement for the polarizable force field. Also for transport quantities such as ionic conductivities, transference numbers, and viscosities, the agreement with the polarizable force field is by far better for a large range of salt concentrations and EC[thin space (1/6-em)]:[thin space (1/6-em)]EMC ratios. In contrast, for the non-polarizable variants, the dynamics are largely underestimated. The excellent performance of the polarizable force field is explored in different ways to pave the way to a realistic description of the structure–dynamics relationships for a wide range of salt and solvent compositions for this standard electrolyte. In particular, we can characterize the distinct correlation terms between like and unlike ions, relate them to structural properties, and explore to which degree the transport in this electrolyte is mass or charge limited.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 1221 - Fundamentals and Materials (POF4-122) (POF4-122)
  2. BIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189) (957189)

Appears in the scientific report 2023
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database
Open Access

 Record created 2023-12-13, last modified 2024-07-09


Published on 2023-07-11. Available in OpenAccess from 2024-07-11.:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)