001019412 001__ 1019412
001019412 005__ 20240712113144.0
001019412 0247_ $$2doi$$a10.48550/ARXIV.2303.03748
001019412 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05370
001019412 037__ $$aFZJ-2023-05370
001019412 1001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b0$$eCorresponding author$$ufzj
001019412 245__ $$aComputing formation enthalpies through an explainable machine learning method: the case of Lanthanide Orthophosphates solid solutions
001019412 260__ $$barXiv$$c2023
001019412 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1702547156_9947
001019412 3367_ $$2ORCID$$aWORKING_PAPER
001019412 3367_ $$028$$2EndNote$$aElectronic Article
001019412 3367_ $$2DRIVER$$apreprint
001019412 3367_ $$2BibTeX$$aARTICLE
001019412 3367_ $$2DataCite$$aOutput Types/Working Paper
001019412 520__ $$aIn the last decade, the use of Machine and Deep Learning (MDL) methods in Condensed Matter physics has seen a steep increase in the number of problems tackled and methods employed. A number of distinct MDL approaches have been employed in many different topics; from prediction of materials properties to computation of Density Functional Theory potentials and inter-atomic force fields. In many cases the result is a surrogate model which returns promising predictions but is opaque on the inner mechanisms of its success. On the other hand, the typical practitioner looks for answers that are explainable and provide a clear insight on the mechanisms governing a physical phenomena. In this work, we describe a proposal to use a sophisticated combination of traditional Machine Learning methods to obtain an explainable model that outputs an explicit functional formulation for the material property of interest. We demonstrate the effectiveness of our methodology in deriving a new highly accurate expression for the enthalpy of formation of solid solutions of lanthanides orthophosphates.
001019412 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001019412 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001019412 536__ $$0G:(DE-HGF)POF4-1212$$a1212 - Materials and Interfaces (POF4-121)$$cPOF4-121$$fPOF IV$$x2
001019412 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x3
001019412 588__ $$aDataset connected to DataCite
001019412 650_7 $$2Other$$aComputational Engineering, Finance, and Science (cs.CE)
001019412 650_7 $$2Other$$aMaterials Science (cond-mat.mtrl-sci)
001019412 650_7 $$2Other$$aMachine Learning (cs.LG)
001019412 650_7 $$2Other$$aFOS: Computer and information sciences
001019412 650_7 $$2Other$$aFOS: Physical sciences
001019412 650_7 $$2Other$$a68T05, 62J07
001019412 7001_ $$0P:(DE-Juel1)178969$$aWu, Xinzhe$$b1$$ufzj
001019412 7001_ $$0P:(DE-HGF)0$$aBornhake, Thomas$$b2
001019412 7001_ $$0P:(DE-Juel1)137024$$aKowalski, Piotr M.$$b3$$ufzj
001019412 773__ $$a10.48550/ARXIV.2303.03748
001019412 8564_ $$uhttps://juser.fz-juelich.de/record/1019412/files/2303.03748.pdf$$yOpenAccess
001019412 8564_ $$uhttps://juser.fz-juelich.de/record/1019412/files/2303.03748.gif?subformat=icon$$xicon$$yOpenAccess
001019412 8564_ $$uhttps://juser.fz-juelich.de/record/1019412/files/2303.03748.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019412 8564_ $$uhttps://juser.fz-juelich.de/record/1019412/files/2303.03748.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019412 8564_ $$uhttps://juser.fz-juelich.de/record/1019412/files/2303.03748.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019412 909CO $$ooai:juser.fz-juelich.de:1019412$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001019412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich$$b0$$kFZJ
001019412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178969$$aForschungszentrum Jülich$$b1$$kFZJ
001019412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137024$$aForschungszentrum Jülich$$b3$$kFZJ
001019412 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001019412 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001019412 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x2
001019412 9141_ $$y2023
001019412 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019412 920__ $$lyes
001019412 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001019412 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x1
001019412 9801_ $$aFullTexts
001019412 980__ $$apreprint
001019412 980__ $$aVDB
001019412 980__ $$aUNRESTRICTED
001019412 980__ $$aI:(DE-Juel1)JSC-20090406
001019412 980__ $$aI:(DE-Juel1)IEK-13-20190226
001019412 981__ $$aI:(DE-Juel1)IET-3-20190226