Home > Publications database > Computing formation enthalpies through an explainable machine learning method: the case of Lanthanide Orthophosphates solid solutions > print |
001 | 1019412 | ||
005 | 20240712113144.0 | ||
024 | 7 | _ | |a 10.48550/ARXIV.2303.03748 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-05370 |2 datacite_doi |
037 | _ | _ | |a FZJ-2023-05370 |
100 | 1 | _ | |a Di Napoli, Edoardo |0 P:(DE-Juel1)144723 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Computing formation enthalpies through an explainable machine learning method: the case of Lanthanide Orthophosphates solid solutions |
260 | _ | _ | |c 2023 |b arXiv |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1702547156_9947 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
520 | _ | _ | |a In the last decade, the use of Machine and Deep Learning (MDL) methods in Condensed Matter physics has seen a steep increase in the number of problems tackled and methods employed. A number of distinct MDL approaches have been employed in many different topics; from prediction of materials properties to computation of Density Functional Theory potentials and inter-atomic force fields. In many cases the result is a surrogate model which returns promising predictions but is opaque on the inner mechanisms of its success. On the other hand, the typical practitioner looks for answers that are explainable and provide a clear insight on the mechanisms governing a physical phenomena. In this work, we describe a proposal to use a sophisticated combination of traditional Machine Learning methods to obtain an explainable model that outputs an explicit functional formulation for the material property of interest. We demonstrate the effectiveness of our methodology in deriving a new highly accurate expression for the enthalpy of formation of solid solutions of lanthanides orthophosphates. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 1 |
536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 2 |
536 | _ | _ | |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM) |0 G:(DE-Juel1)SDLQM |c SDLQM |f Simulation and Data Laboratory Quantum Materials (SDLQM) |x 3 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a Computational Engineering, Finance, and Science (cs.CE) |2 Other |
650 | _ | 7 | |a Materials Science (cond-mat.mtrl-sci) |2 Other |
650 | _ | 7 | |a Machine Learning (cs.LG) |2 Other |
650 | _ | 7 | |a FOS: Computer and information sciences |2 Other |
650 | _ | 7 | |a FOS: Physical sciences |2 Other |
650 | _ | 7 | |a 68T05, 62J07 |2 Other |
700 | 1 | _ | |a Wu, Xinzhe |0 P:(DE-Juel1)178969 |b 1 |u fzj |
700 | 1 | _ | |a Bornhake, Thomas |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kowalski, Piotr M. |0 P:(DE-Juel1)137024 |b 3 |u fzj |
773 | _ | _ | |a 10.48550/ARXIV.2303.03748 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1019412/files/2303.03748.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1019412/files/2303.03748.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1019412/files/2303.03748.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1019412/files/2303.03748.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1019412/files/2303.03748.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1019412 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)144723 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)178969 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)137024 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 1 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 2 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-13-20190226 |k IEK-13 |l IEK-13 |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IEK-13-20190226 |
981 | _ | _ | |a I:(DE-Juel1)IET-3-20190226 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|