001     1019412
005     20240712113144.0
024 7 _ |a 10.48550/ARXIV.2303.03748
|2 doi
024 7 _ |a 10.34734/FZJ-2023-05370
|2 datacite_doi
037 _ _ |a FZJ-2023-05370
100 1 _ |a Di Napoli, Edoardo
|0 P:(DE-Juel1)144723
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Computing formation enthalpies through an explainable machine learning method: the case of Lanthanide Orthophosphates solid solutions
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1702547156_9947
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a In the last decade, the use of Machine and Deep Learning (MDL) methods in Condensed Matter physics has seen a steep increase in the number of problems tackled and methods employed. A number of distinct MDL approaches have been employed in many different topics; from prediction of materials properties to computation of Density Functional Theory potentials and inter-atomic force fields. In many cases the result is a surrogate model which returns promising predictions but is opaque on the inner mechanisms of its success. On the other hand, the typical practitioner looks for answers that are explainable and provide a clear insight on the mechanisms governing a physical phenomena. In this work, we describe a proposal to use a sophisticated combination of traditional Machine Learning methods to obtain an explainable model that outputs an explicit functional formulation for the material property of interest. We demonstrate the effectiveness of our methodology in deriving a new highly accurate expression for the enthalpy of formation of solid solutions of lanthanides orthophosphates.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 1
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 2
536 _ _ |a Simulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)
|0 G:(DE-Juel1)SDLQM
|c SDLQM
|f Simulation and Data Laboratory Quantum Materials (SDLQM)
|x 3
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Computational Engineering, Finance, and Science (cs.CE)
|2 Other
650 _ 7 |a Materials Science (cond-mat.mtrl-sci)
|2 Other
650 _ 7 |a Machine Learning (cs.LG)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
650 _ 7 |a 68T05, 62J07
|2 Other
700 1 _ |a Wu, Xinzhe
|0 P:(DE-Juel1)178969
|b 1
|u fzj
700 1 _ |a Bornhake, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kowalski, Piotr M.
|0 P:(DE-Juel1)137024
|b 3
|u fzj
773 _ _ |a 10.48550/ARXIV.2303.03748
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019412/files/2303.03748.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019412/files/2303.03748.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019412/files/2303.03748.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019412/files/2303.03748.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019412/files/2303.03748.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019412
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144723
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178969
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)137024
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 2
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 1
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21