Preprint FZJ-2023-05414

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Fermionic Sign Problem Minimization by Constant Path Integral Contour Shifts

 ;  ;  ;  ;

2023

This record in other databases:

Please use a persistent id in citations: doi:

Report No.: arXiv:2307.06785

Abstract: The path integral formulation of quantum mechanical problems including fermions is often affected by a severe numerical sign problem. We show how such a sign problem can be alleviated by a judiciously chosen constant imaginary offset to the path integral. Such integration contour deformations introduce no additional computational cost to the Hybrid Monte Carlo algorithm, while its effective sample size is greatly increased. This makes otherwise unviable simulations efficient for a wide range of parameters. Applying our method to the Hubbard model, we find that the sign problem is significantly reduced. Furthermore, we prove that it vanishes completely for large chemical potentials, a regime where the sign problem is expected to be particularly severe without imaginary offsets. In addition to a numerical analysis of such optimized contour shifts, we analytically compute the shifts corresponding to the leading and next-to-leading order corrections to the action. We find that such simple approximations, free of significant computational cost, suffice in many cases.

Keyword(s): Condensed Matter Physics (2nd) ; Nuclear Physics (2nd)


Contributing Institute(s):
  1. Theorie der Starken Wechselwirkung (IAS-4)
  2. Institut 3 (Theoretische Kernphysik) (IKP-3)
  3. Center for Advanced Simulation and Analytics (CASA)
  4. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076) (196253076)

Appears in the scientific report 2023
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > IAS > IAS-4
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-12-15, letzte Änderung am 2023-12-16


OpenAccess:
Volltext herunterladen PDF
Externe links:
Volltext herunterladenVolltext
Volltext herunterladenFulltext by arXiv.org
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)