001019573 001__ 1019573
001019573 005__ 20240712084551.0
001019573 0247_ $$2doi$$a10.1029/2023WR034722
001019573 0247_ $$2ISSN$$a0043-1397
001019573 0247_ $$2ISSN$$a1944-7973
001019573 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-05508
001019573 0247_ $$2WOS$$aWOS:001106027500001
001019573 037__ $$aFZJ-2023-05508
001019573 082__ $$a550
001019573 1001_ $$0P:(DE-Juel1)187273$$aLönartz, Mara I.$$b0$$eCorresponding author
001019573 245__ $$aCapturing the Dynamic Processes of Porosity Clogging
001019573 260__ $$a[New York]$$bWiley$$c2023
001019573 3367_ $$2DRIVER$$aarticle
001019573 3367_ $$2DataCite$$aOutput Types/Journal article
001019573 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1703052278_10224
001019573 3367_ $$2BibTeX$$aARTICLE
001019573 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001019573 3367_ $$00$$2EndNote$$aJournal Article
001019573 520__ $$aUnderstanding geochemical processes and their impact onmacroscopic transport properties of porous media is essential fordescribing the long-term evolution of various subsurfacesystems. Chemical and thermal gradients promote mineralprecipitation reactions in porous media, resulting in a reductionof porosity and potentially clogging transport pathways ofsolutes. Commonly applied porosity-diffusivity relationships incontinuum-scale reactive transport modelling based on Archie’slaw and extended versions thereof describe the case of cloggingas a final state, setting the effective diffusivity to a negligible lowvalue. However, recent experiments and pore-scale modellinginvestigations demonstrated the limitations of empirical laws inpredicting effective transport properties in response to aprecipitation induced porosity reduction and pore clogging,suggesting a non-negligible inherent diffusivity of newly-formedprecipitates. To verify this hypothesis, we developed amicrofluidic reactor design that combines time-lapse opticalmicroscopy and confocal Raman spectroscopy, providing realtimeinsights into mineral precipitation induced porosity cloggingunder purely diffusive transport conditions, using theprecipitation of celestine (SrSO4) as a model system (Figure 1a).As the pore network became clogged, isotopic tracer diffusionexperiments were conducted and monitored by Ramanspectroscopy to visualize the transport of deuterium through theevolving microporosity of the precipitates, demonstrating thenon-final state of clogging (Figure 1b). The evolution of theporosity-diffusivity relation in response to precipitation reactionsshows an increasingly deviating behavior to Archie’s law. Theapplication of an extended power law improved the descriptionof the evolving porosity-diffusivity relation, but still neglectedpost-clogging features. Currently, we develop microfluidicsetups to answer the question how clogging-related processesdepend on initial pore geometries. The combination ofmicrofluidic experiments and pore-scale modelling opens newpossibilities to identify and validate relevant pore-scaleprocesses, providing data for upscaling approaches and to derivekey relationships for continuum-scale reactive transportsimulations.
001019573 536__ $$0G:(DE-HGF)POF4-1411$$a1411 - Nuclear Waste Disposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0
001019573 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001019573 7001_ $$0P:(DE-Juel1)179556$$aYang, Yuankai$$b1
001019573 7001_ $$0P:(DE-Juel1)156511$$aDeissmann, Guido$$b2
001019573 7001_ $$0P:(DE-Juel1)130324$$aBosbach, Dirk$$b3
001019573 7001_ $$0P:(DE-Juel1)169154$$aPoonoosamy, Jenna$$b4$$eLast author
001019573 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2023WR034722$$gVol. 59, no. 11, p. e2023WR034722$$n11$$pe2023WR034722$$tWater resources research$$v59$$x0043-1397$$y2023
001019573 8564_ $$uhttps://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.pdf$$yOpenAccess
001019573 8564_ $$uhttps://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.gif?subformat=icon$$xicon$$yOpenAccess
001019573 8564_ $$uhttps://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001019573 8564_ $$uhttps://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001019573 8564_ $$uhttps://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001019573 8767_ $$d2023-12-18$$eHybrid-OA$$jDEAL
001019573 909CO $$ooai:juser.fz-juelich.de:1019573$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001019573 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187273$$aForschungszentrum Jülich$$b0$$kFZJ
001019573 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179556$$aForschungszentrum Jülich$$b1$$kFZJ
001019573 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156511$$aForschungszentrum Jülich$$b2$$kFZJ
001019573 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130324$$aForschungszentrum Jülich$$b3$$kFZJ
001019573 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169154$$aForschungszentrum Jülich$$b4$$kFZJ
001019573 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1411$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0
001019573 9141_ $$y2023
001019573 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001019573 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001019573 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-24
001019573 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001019573 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-10-24
001019573 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bWATER RESOUR RES : 2022$$d2023-10-24
001019573 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-24$$wger
001019573 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001019573 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001019573 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2022$$d2023-10-24
001019573 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001019573 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001019573 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001019573 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001019573 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001019573 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung$$x0
001019573 9801_ $$aAPC
001019573 9801_ $$aFullTexts
001019573 980__ $$ajournal
001019573 980__ $$aVDB
001019573 980__ $$aUNRESTRICTED
001019573 980__ $$aI:(DE-Juel1)IEK-6-20101013
001019573 980__ $$aAPC
001019573 981__ $$aI:(DE-Juel1)IFN-2-20101013