Home > Workflow collections > Publication Charges > Capturing the Dynamic Processes of Porosity Clogging > print |
001 | 1019573 | ||
005 | 20240712084551.0 | ||
024 | 7 | _ | |a 10.1029/2023WR034722 |2 doi |
024 | 7 | _ | |a 0043-1397 |2 ISSN |
024 | 7 | _ | |a 1944-7973 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-05508 |2 datacite_doi |
024 | 7 | _ | |a WOS:001106027500001 |2 WOS |
037 | _ | _ | |a FZJ-2023-05508 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Lönartz, Mara I. |0 P:(DE-Juel1)187273 |b 0 |e Corresponding author |
245 | _ | _ | |a Capturing the Dynamic Processes of Porosity Clogging |
260 | _ | _ | |a [New York] |c 2023 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1703052278_10224 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Understanding geochemical processes and their impact onmacroscopic transport properties of porous media is essential fordescribing the long-term evolution of various subsurfacesystems. Chemical and thermal gradients promote mineralprecipitation reactions in porous media, resulting in a reductionof porosity and potentially clogging transport pathways ofsolutes. Commonly applied porosity-diffusivity relationships incontinuum-scale reactive transport modelling based on Archie’slaw and extended versions thereof describe the case of cloggingas a final state, setting the effective diffusivity to a negligible lowvalue. However, recent experiments and pore-scale modellinginvestigations demonstrated the limitations of empirical laws inpredicting effective transport properties in response to aprecipitation induced porosity reduction and pore clogging,suggesting a non-negligible inherent diffusivity of newly-formedprecipitates. To verify this hypothesis, we developed amicrofluidic reactor design that combines time-lapse opticalmicroscopy and confocal Raman spectroscopy, providing realtimeinsights into mineral precipitation induced porosity cloggingunder purely diffusive transport conditions, using theprecipitation of celestine (SrSO4) as a model system (Figure 1a).As the pore network became clogged, isotopic tracer diffusionexperiments were conducted and monitored by Ramanspectroscopy to visualize the transport of deuterium through theevolving microporosity of the precipitates, demonstrating thenon-final state of clogging (Figure 1b). The evolution of theporosity-diffusivity relation in response to precipitation reactionsshows an increasingly deviating behavior to Archie’s law. Theapplication of an extended power law improved the descriptionof the evolving porosity-diffusivity relation, but still neglectedpost-clogging features. Currently, we develop microfluidicsetups to answer the question how clogging-related processesdepend on initial pore geometries. The combination ofmicrofluidic experiments and pore-scale modelling opens newpossibilities to identify and validate relevant pore-scaleprocesses, providing data for upscaling approaches and to derivekey relationships for continuum-scale reactive transportsimulations. |
536 | _ | _ | |a 1411 - Nuclear Waste Disposal (POF4-141) |0 G:(DE-HGF)POF4-1411 |c POF4-141 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Yang, Yuankai |0 P:(DE-Juel1)179556 |b 1 |
700 | 1 | _ | |a Deissmann, Guido |0 P:(DE-Juel1)156511 |b 2 |
700 | 1 | _ | |a Bosbach, Dirk |0 P:(DE-Juel1)130324 |b 3 |
700 | 1 | _ | |a Poonoosamy, Jenna |0 P:(DE-Juel1)169154 |b 4 |e Last author |
773 | _ | _ | |a 10.1029/2023WR034722 |g Vol. 59, no. 11, p. e2023WR034722 |0 PERI:(DE-600)2029553-4 |n 11 |p e2023WR034722 |t Water resources research |v 59 |y 2023 |x 0043-1397 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1019573 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187273 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)179556 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)156511 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130324 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169154 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II) |1 G:(DE-HGF)POF4-140 |0 G:(DE-HGF)POF4-141 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Nukleare Entsorgung |9 G:(DE-HGF)POF4-1411 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-24 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-10-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b WATER RESOUR RES : 2022 |d 2023-10-24 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-24 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b WATER RESOUR RES : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-6-20101013 |k IEK-6 |l Nukleare Entsorgung |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-6-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IFN-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|