001     1019573
005     20240712084551.0
024 7 _ |a 10.1029/2023WR034722
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-05508
|2 datacite_doi
024 7 _ |a WOS:001106027500001
|2 WOS
037 _ _ |a FZJ-2023-05508
082 _ _ |a 550
100 1 _ |a Lönartz, Mara I.
|0 P:(DE-Juel1)187273
|b 0
|e Corresponding author
245 _ _ |a Capturing the Dynamic Processes of Porosity Clogging
260 _ _ |a [New York]
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1703052278_10224
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding geochemical processes and their impact onmacroscopic transport properties of porous media is essential fordescribing the long-term evolution of various subsurfacesystems. Chemical and thermal gradients promote mineralprecipitation reactions in porous media, resulting in a reductionof porosity and potentially clogging transport pathways ofsolutes. Commonly applied porosity-diffusivity relationships incontinuum-scale reactive transport modelling based on Archie’slaw and extended versions thereof describe the case of cloggingas a final state, setting the effective diffusivity to a negligible lowvalue. However, recent experiments and pore-scale modellinginvestigations demonstrated the limitations of empirical laws inpredicting effective transport properties in response to aprecipitation induced porosity reduction and pore clogging,suggesting a non-negligible inherent diffusivity of newly-formedprecipitates. To verify this hypothesis, we developed amicrofluidic reactor design that combines time-lapse opticalmicroscopy and confocal Raman spectroscopy, providing realtimeinsights into mineral precipitation induced porosity cloggingunder purely diffusive transport conditions, using theprecipitation of celestine (SrSO4) as a model system (Figure 1a).As the pore network became clogged, isotopic tracer diffusionexperiments were conducted and monitored by Ramanspectroscopy to visualize the transport of deuterium through theevolving microporosity of the precipitates, demonstrating thenon-final state of clogging (Figure 1b). The evolution of theporosity-diffusivity relation in response to precipitation reactionsshows an increasingly deviating behavior to Archie’s law. Theapplication of an extended power law improved the descriptionof the evolving porosity-diffusivity relation, but still neglectedpost-clogging features. Currently, we develop microfluidicsetups to answer the question how clogging-related processesdepend on initial pore geometries. The combination ofmicrofluidic experiments and pore-scale modelling opens newpossibilities to identify and validate relevant pore-scaleprocesses, providing data for upscaling approaches and to derivekey relationships for continuum-scale reactive transportsimulations.
536 _ _ |a 1411 - Nuclear Waste Disposal (POF4-141)
|0 G:(DE-HGF)POF4-1411
|c POF4-141
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yang, Yuankai
|0 P:(DE-Juel1)179556
|b 1
700 1 _ |a Deissmann, Guido
|0 P:(DE-Juel1)156511
|b 2
700 1 _ |a Bosbach, Dirk
|0 P:(DE-Juel1)130324
|b 3
700 1 _ |a Poonoosamy, Jenna
|0 P:(DE-Juel1)169154
|b 4
|e Last author
773 _ _ |a 10.1029/2023WR034722
|g Vol. 59, no. 11, p. e2023WR034722
|0 PERI:(DE-600)2029553-4
|n 11
|p e2023WR034722
|t Water resources research
|v 59
|y 2023
|x 0043-1397
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1019573/files/L%C3%B6nartz%20et%20al.%20%282023%29%20Capturing%20the%20Dynamic%20Processes%20of%20Porosity%20Clogging.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1019573
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187273
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179556
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156511
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130324
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169154
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)
|1 G:(DE-HGF)POF4-140
|0 G:(DE-HGF)POF4-141
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Nukleare Entsorgung
|9 G:(DE-HGF)POF4-1411
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b WATER RESOUR RES : 2022
|d 2023-10-24
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21