001021018 001__ 1021018
001021018 005__ 20240709082106.0
001021018 037__ $$aFZJ-2024-00478
001021018 1001_ $$0P:(DE-Juel1)190423$$aAhrens, Lara$$b0
001021018 1112_ $$aMicroscopy Conference 2023$$cDramstadt$$d2023-02-26 - 2023-03-02$$gMC2023$$wFed Rep Germany
001021018 245__ $$aUnderstanding of the Degradation and Aging Mechanisms in Ni-rich NMC at Nanoscale
001021018 260__ $$c2023
001021018 3367_ $$033$$2EndNote$$aConference Paper
001021018 3367_ $$2DataCite$$aOther
001021018 3367_ $$2BibTeX$$aINPROCEEDINGS
001021018 3367_ $$2DRIVER$$aconferenceObject
001021018 3367_ $$2ORCID$$aLECTURE_SPEECH
001021018 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1705295468_12932$$xAfter Call
001021018 520__ $$aNi-rich NMC (NixMnyCo1-x-yO2 with x > 0.8) has been a promising candidate for cathode active materials (CAMs) in Li-ion batteries (LIBs) [1,2]. Reducing the Cobalt content in NMC cathodes leads to a more environment-friendly and affordable material. Also, the specific capacity of Ni-rich NMC is significantly increased compared to conventional NMC material. However, the cycle stability is reduced. To improve the lifetime of Ni-rich NMCs, it is important to gain a deeper understanding of the degradation- and aging mechanisms appearing during material synthesis and cycling. Therefore, studies of the micro- and nanostructure are key for tailoring material properties specifically, for instance through doping or coating.Modern focused-ion-beam (FIB) preparation allows cutting of extremely thin samples, enabling high-resolution imaging. Figure 1 shows a lamella of a polycrystalline Ni-rich NMC particle, which was prepared by FIB and a corresponding HRSTEM image of a layered structure. In addition to ex-situ experiments on the atomic scale, in-situ experiments play a key role in understanding degradation and aging mechanisms in LIBs [3,4]. By applying voltage or temperature more realistic scenarios can be represented. Therefore, we focus both on ex-situ and on in-situ setups (Figure 2).
001021018 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001021018 7001_ $$0P:(DE-HGF)0$$aMeledina, Maria$$b1
001021018 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b2$$eCorresponding author
001021018 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3$$ufzj
001021018 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b4$$ufzj
001021018 909CO $$ooai:juser.fz-juelich.de:1021018$$pVDB
001021018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190423$$aForschungszentrum Jülich$$b0$$kFZJ
001021018 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Central Facility for Electron Microscopy (GFE), RWTH Aachen University$$b1
001021018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b2$$kFZJ
001021018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001021018 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
001021018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b4$$kFZJ
001021018 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)130824$$aRWTH Aachen$$b4$$kRWTH
001021018 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001021018 9141_ $$y2023
001021018 920__ $$lyes
001021018 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001021018 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
001021018 980__ $$aconf
001021018 980__ $$aVDB
001021018 980__ $$aI:(DE-Juel1)IEK-9-20110218
001021018 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001021018 980__ $$aUNRESTRICTED
001021018 981__ $$aI:(DE-Juel1)IET-1-20110218