001     1021018
005     20240709082106.0
037 _ _ |a FZJ-2024-00478
100 1 _ |a Ahrens, Lara
|0 P:(DE-Juel1)190423
|b 0
111 2 _ |a Microscopy Conference 2023
|g MC2023
|c Dramstadt
|d 2023-02-26 - 2023-03-02
|w Fed Rep Germany
245 _ _ |a Understanding of the Degradation and Aging Mechanisms in Ni-rich NMC at Nanoscale
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1705295468_12932
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Ni-rich NMC (NixMnyCo1-x-yO2 with x > 0.8) has been a promising candidate for cathode active materials (CAMs) in Li-ion batteries (LIBs) [1,2]. Reducing the Cobalt content in NMC cathodes leads to a more environment-friendly and affordable material. Also, the specific capacity of Ni-rich NMC is significantly increased compared to conventional NMC material. However, the cycle stability is reduced. To improve the lifetime of Ni-rich NMCs, it is important to gain a deeper understanding of the degradation- and aging mechanisms appearing during material synthesis and cycling. Therefore, studies of the micro- and nanostructure are key for tailoring material properties specifically, for instance through doping or coating.Modern focused-ion-beam (FIB) preparation allows cutting of extremely thin samples, enabling high-resolution imaging. Figure 1 shows a lamella of a polycrystalline Ni-rich NMC particle, which was prepared by FIB and a corresponding HRSTEM image of a layered structure. In addition to ex-situ experiments on the atomic scale, in-situ experiments play a key role in understanding degradation and aging mechanisms in LIBs [3,4]. By applying voltage or temperature more realistic scenarios can be represented. Therefore, we focus both on ex-situ and on in-situ setups (Figure 2).
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
700 1 _ |a Meledina, Maria
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 2
|e Corresponding author
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 3
|u fzj
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:1021018
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190423
910 1 _ |a Central Facility for Electron Microscopy (GFE), RWTH Aachen University
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130824
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)130824
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21