001021024 001__ 1021024
001021024 005__ 20240712112829.0
001021024 0247_ $$2doi$$a10.1093/micmic/ozad067.667
001021024 0247_ $$2ISSN$$a1079-8501
001021024 0247_ $$2ISSN$$a1431-9276
001021024 0247_ $$2ISSN$$a1435-8115
001021024 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-00484
001021024 037__ $$aFZJ-2024-00484
001021024 082__ $$a500
001021024 1001_ $$0P:(DE-HGF)0$$aBladt, Eva$$b0$$eCorresponding author
001021024 1112_ $$aMicroscopy and Microanalysis 2023$$cMinneapolis$$d2023-07-23 - 2023-07-27$$gM&M2023$$wUSA
001021024 245__ $$aMetal Electroplating/Stripping and 4D STEM AnalysisRevealed by Liquid Phase Transmission ElectronMicroscopy
001021024 260__ $$aOxford$$bOxford University Press$$c2023
001021024 300__ $$a1304
001021024 3367_ $$2ORCID$$aCONFERENCE_PAPER
001021024 3367_ $$033$$2EndNote$$aConference Paper
001021024 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
001021024 3367_ $$2BibTeX$$aINPROCEEDINGS
001021024 3367_ $$2DRIVER$$aconferenceObject
001021024 3367_ $$2DataCite$$aOutput Types/Conference Paper
001021024 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1705483917_25645
001021024 4900_ $$v29
001021024 520__ $$aAqueous zinc ion and metal-based batteries have attracted much attention towards the development of an alternative electrochemical energy storage technology beyond lithium ion batteries [1]. There are several advantages of metal-based batteries, including high volumetric capacity (∼8000 mAh/L), low anode potential (∼0.7 V vs. SHE), safety and electrode abundance.However, the problem of metallic dendrite growth during cycling can cause battery short circuit failure, which can result in safetyhazards and severely limit the progress and further commercialization [2, 3]. To this end, direct visualization of dendrite evolutionunder operando conditions is a prerequisite for battery safety and longevity. Among the many operando/in situ techniques, the useof liquid phase transmission electron microscopy (LPTEM) [4] has been very effective in enabling a more detailed understandingof metal plating and stripping, where the ability to locally probe and visualize the key processes governing the dendrite formation.However, it remains challenging to perform high resolution and analytical electron microscopy studies in a liquid cell, especiallyunder liquid flow conditions.In this work, we use LPTEM [5, 6] to directly visualize the electroplating and stripping of metals on micro-electrodes of dedicated MEMS (micro-electro-mechanical system) chips at the nanoscale. By comparing the plating/stripping under different chemical and/or electrochemical environments, including static or flow electrolyte conditions and varying current densities, we showhow metal dendrites can be effectively controlled on electrochemical cycling of the battery, as revealed by our operando LPTEMobservations. In addition, we recently developed a liquid purging approach, which is based on the DENSsolutions unique LiquidSupply System and the on-chip liquid flow capability (Figure 1). This approach enables one to perform 4D STEM electron diffraction analysis on the plating (Figure 2). Following the experimental results, the growth of zinc dendrites can be effectively mitigated and directly minimized by flowing electrolyte into the cell and adjusting the current density, thus, providing new insightsinto the aqueous metal battery’s chemistry and the pathways for further optimization.
001021024 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001021024 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001021024 7001_ $$0P:(DE-HGF)0$$aPivak, Yevheniy$$b1
001021024 7001_ $$0P:(DE-Juel1)180853$$aPark, Junbeom$$b2
001021024 7001_ $$0P:(DE-Juel1)171370$$aWeber, Dieter$$b3
001021024 7001_ $$0P:(DE-Juel1)180678$$aJo, Janghyun$$b4
001021024 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b5
001021024 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
001021024 7001_ $$0P:(DE-HGF)0$$aSun, Hongyu$$b7$$eCorresponding author
001021024 773__ $$0PERI:(DE-600)1481716-0$$a10.1093/micmic/ozad067.667$$gVol. 29, no. Supplement_1, p. 1304 - 1305$$nSupplement_1$$p1304 - 1305$$tMicroscopy and microanalysis$$v29$$x1079-8501$$y2023
001021024 8564_ $$uhttps://juser.fz-juelich.de/record/1021024/files/ozad067.667.pdf$$yOpenAccess
001021024 8564_ $$uhttps://juser.fz-juelich.de/record/1021024/files/ozad067.667.gif?subformat=icon$$xicon$$yOpenAccess
001021024 8564_ $$uhttps://juser.fz-juelich.de/record/1021024/files/ozad067.667.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001021024 8564_ $$uhttps://juser.fz-juelich.de/record/1021024/files/ozad067.667.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001021024 8564_ $$uhttps://juser.fz-juelich.de/record/1021024/files/ozad067.667.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001021024 909CO $$ooai:juser.fz-juelich.de:1021024$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001021024 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDENSsolutions B.V., Delft, The Netherlands$$b0
001021024 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a DENSsolutions B.V., Delft, The Netherlands$$b1
001021024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180853$$aForschungszentrum Jülich$$b2$$kFZJ
001021024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171370$$aForschungszentrum Jülich$$b3$$kFZJ
001021024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180678$$aForschungszentrum Jülich$$b4$$kFZJ
001021024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b5$$kFZJ
001021024 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
001021024 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
001021024 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001021024 9141_ $$y2023
001021024 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001021024 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-22$$wger
001021024 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROSC MICROANAL : 2022$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-22
001021024 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-22
001021024 920__ $$lyes
001021024 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001021024 9801_ $$aFullTexts
001021024 980__ $$acontrib
001021024 980__ $$aVDB
001021024 980__ $$ajournal
001021024 980__ $$aI:(DE-Juel1)IEK-9-20110218
001021024 980__ $$aUNRESTRICTED
001021024 981__ $$aI:(DE-Juel1)IET-1-20110218