Home > Publications database > Metal Electroplating/Stripping and 4D STEM AnalysisRevealed by Liquid Phase Transmission ElectronMicroscopy |
Journal Article/Contribution to a conference proceedings | FZJ-2024-00484 |
; ; ; ; ; ; ;
2023
Oxford University Press
Oxford
This record in other databases:
Please use a persistent id in citations: doi:10.1093/micmic/ozad067.667 doi:10.34734/FZJ-2024-00484
Abstract: Aqueous zinc ion and metal-based batteries have attracted much attention towards the development of an alternative electrochemical energy storage technology beyond lithium ion batteries [1]. There are several advantages of metal-based batteries, including high volumetric capacity (∼8000 mAh/L), low anode potential (∼0.7 V vs. SHE), safety and electrode abundance.However, the problem of metallic dendrite growth during cycling can cause battery short circuit failure, which can result in safetyhazards and severely limit the progress and further commercialization [2, 3]. To this end, direct visualization of dendrite evolutionunder operando conditions is a prerequisite for battery safety and longevity. Among the many operando/in situ techniques, the useof liquid phase transmission electron microscopy (LPTEM) [4] has been very effective in enabling a more detailed understandingof metal plating and stripping, where the ability to locally probe and visualize the key processes governing the dendrite formation.However, it remains challenging to perform high resolution and analytical electron microscopy studies in a liquid cell, especiallyunder liquid flow conditions.In this work, we use LPTEM [5, 6] to directly visualize the electroplating and stripping of metals on micro-electrodes of dedicated MEMS (micro-electro-mechanical system) chips at the nanoscale. By comparing the plating/stripping under different chemical and/or electrochemical environments, including static or flow electrolyte conditions and varying current densities, we showhow metal dendrites can be effectively controlled on electrochemical cycling of the battery, as revealed by our operando LPTEMobservations. In addition, we recently developed a liquid purging approach, which is based on the DENSsolutions unique LiquidSupply System and the on-chip liquid flow capability (Figure 1). This approach enables one to perform 4D STEM electron diffraction analysis on the plating (Figure 2). Following the experimental results, the growth of zinc dendrites can be effectively mitigated and directly minimized by flowing electrolyte into the cell and adjusting the current density, thus, providing new insightsinto the aqueous metal battery’s chemistry and the pathways for further optimization.
![]() |
The record appears in these collections: |