001     1021024
005     20240712112829.0
024 7 _ |a 10.1093/micmic/ozad067.667
|2 doi
024 7 _ |a 1079-8501
|2 ISSN
024 7 _ |a 1431-9276
|2 ISSN
024 7 _ |a 1435-8115
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00484
|2 datacite_doi
037 _ _ |a FZJ-2024-00484
082 _ _ |a 500
100 1 _ |a Bladt, Eva
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a Microscopy and Microanalysis 2023
|g M&M2023
|c Minneapolis
|d 2023-07-23 - 2023-07-27
|w USA
245 _ _ |a Metal Electroplating/Stripping and 4D STEM AnalysisRevealed by Liquid Phase Transmission ElectronMicroscopy
260 _ _ |a Oxford
|c 2023
|b Oxford University Press
300 _ _ |a 1304
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1705483917_25645
|2 PUB:(DE-HGF)
490 0 _ |v 29
520 _ _ |a Aqueous zinc ion and metal-based batteries have attracted much attention towards the development of an alternative electrochemical energy storage technology beyond lithium ion batteries [1]. There are several advantages of metal-based batteries, including high volumetric capacity (∼8000 mAh/L), low anode potential (∼0.7 V vs. SHE), safety and electrode abundance.However, the problem of metallic dendrite growth during cycling can cause battery short circuit failure, which can result in safetyhazards and severely limit the progress and further commercialization [2, 3]. To this end, direct visualization of dendrite evolutionunder operando conditions is a prerequisite for battery safety and longevity. Among the many operando/in situ techniques, the useof liquid phase transmission electron microscopy (LPTEM) [4] has been very effective in enabling a more detailed understandingof metal plating and stripping, where the ability to locally probe and visualize the key processes governing the dendrite formation.However, it remains challenging to perform high resolution and analytical electron microscopy studies in a liquid cell, especiallyunder liquid flow conditions.In this work, we use LPTEM [5, 6] to directly visualize the electroplating and stripping of metals on micro-electrodes of dedicated MEMS (micro-electro-mechanical system) chips at the nanoscale. By comparing the plating/stripping under different chemical and/or electrochemical environments, including static or flow electrolyte conditions and varying current densities, we showhow metal dendrites can be effectively controlled on electrochemical cycling of the battery, as revealed by our operando LPTEMobservations. In addition, we recently developed a liquid purging approach, which is based on the DENSsolutions unique LiquidSupply System and the on-chip liquid flow capability (Figure 1). This approach enables one to perform 4D STEM electron diffraction analysis on the plating (Figure 2). Following the experimental results, the growth of zinc dendrites can be effectively mitigated and directly minimized by flowing electrolyte into the cell and adjusting the current density, thus, providing new insightsinto the aqueous metal battery’s chemistry and the pathways for further optimization.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pivak, Yevheniy
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Park, Junbeom
|0 P:(DE-Juel1)180853
|b 2
700 1 _ |a Weber, Dieter
|0 P:(DE-Juel1)171370
|b 3
700 1 _ |a Jo, Janghyun
|0 P:(DE-Juel1)180678
|b 4
700 1 _ |a Basak, Shibabrata
|0 P:(DE-Juel1)180432
|b 5
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 6
|u fzj
700 1 _ |a Sun, Hongyu
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1093/micmic/ozad067.667
|g Vol. 29, no. Supplement_1, p. 1304 - 1305
|0 PERI:(DE-600)1481716-0
|n Supplement_1
|p 1304 - 1305
|t Microscopy and microanalysis
|v 29
|y 2023
|x 1079-8501
856 4 _ |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1021024
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a DENSsolutions B.V., Delft, The Netherlands
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a DENSsolutions B.V., Delft, The Netherlands
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180853
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171370
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)180432
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROSC MICROANAL : 2022
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21