Home > Publications database > Metal Electroplating/Stripping and 4D STEM AnalysisRevealed by Liquid Phase Transmission ElectronMicroscopy > print |
001 | 1021024 | ||
005 | 20240712112829.0 | ||
024 | 7 | _ | |a 10.1093/micmic/ozad067.667 |2 doi |
024 | 7 | _ | |a 1079-8501 |2 ISSN |
024 | 7 | _ | |a 1431-9276 |2 ISSN |
024 | 7 | _ | |a 1435-8115 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-00484 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-00484 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Bladt, Eva |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
111 | 2 | _ | |a Microscopy and Microanalysis 2023 |g M&M2023 |c Minneapolis |d 2023-07-23 - 2023-07-27 |w USA |
245 | _ | _ | |a Metal Electroplating/Stripping and 4D STEM AnalysisRevealed by Liquid Phase Transmission ElectronMicroscopy |
260 | _ | _ | |a Oxford |c 2023 |b Oxford University Press |
300 | _ | _ | |a 1304 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |m journal |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1705483917_25645 |2 PUB:(DE-HGF) |
490 | 0 | _ | |v 29 |
520 | _ | _ | |a Aqueous zinc ion and metal-based batteries have attracted much attention towards the development of an alternative electrochemical energy storage technology beyond lithium ion batteries [1]. There are several advantages of metal-based batteries, including high volumetric capacity (∼8000 mAh/L), low anode potential (∼0.7 V vs. SHE), safety and electrode abundance.However, the problem of metallic dendrite growth during cycling can cause battery short circuit failure, which can result in safetyhazards and severely limit the progress and further commercialization [2, 3]. To this end, direct visualization of dendrite evolutionunder operando conditions is a prerequisite for battery safety and longevity. Among the many operando/in situ techniques, the useof liquid phase transmission electron microscopy (LPTEM) [4] has been very effective in enabling a more detailed understandingof metal plating and stripping, where the ability to locally probe and visualize the key processes governing the dendrite formation.However, it remains challenging to perform high resolution and analytical electron microscopy studies in a liquid cell, especiallyunder liquid flow conditions.In this work, we use LPTEM [5, 6] to directly visualize the electroplating and stripping of metals on micro-electrodes of dedicated MEMS (micro-electro-mechanical system) chips at the nanoscale. By comparing the plating/stripping under different chemical and/or electrochemical environments, including static or flow electrolyte conditions and varying current densities, we showhow metal dendrites can be effectively controlled on electrochemical cycling of the battery, as revealed by our operando LPTEMobservations. In addition, we recently developed a liquid purging approach, which is based on the DENSsolutions unique LiquidSupply System and the on-chip liquid flow capability (Figure 1). This approach enables one to perform 4D STEM electron diffraction analysis on the plating (Figure 2). Following the experimental results, the growth of zinc dendrites can be effectively mitigated and directly minimized by flowing electrolyte into the cell and adjusting the current density, thus, providing new insightsinto the aqueous metal battery’s chemistry and the pathways for further optimization. |
536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Pivak, Yevheniy |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Park, Junbeom |0 P:(DE-Juel1)180853 |b 2 |
700 | 1 | _ | |a Weber, Dieter |0 P:(DE-Juel1)171370 |b 3 |
700 | 1 | _ | |a Jo, Janghyun |0 P:(DE-Juel1)180678 |b 4 |
700 | 1 | _ | |a Basak, Shibabrata |0 P:(DE-Juel1)180432 |b 5 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 6 |u fzj |
700 | 1 | _ | |a Sun, Hongyu |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1093/micmic/ozad067.667 |g Vol. 29, no. Supplement_1, p. 1304 - 1305 |0 PERI:(DE-600)1481716-0 |n Supplement_1 |p 1304 - 1305 |t Microscopy and microanalysis |v 29 |y 2023 |x 1079-8501 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1021024/files/ozad067.667.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1021024 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a DENSsolutions B.V., Delft, The Netherlands |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a DENSsolutions B.V., Delft, The Netherlands |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)180853 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171370 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)180678 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)180432 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 6 |6 P:(DE-Juel1)156123 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-22 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MICROSC MICROANAL : 2022 |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-22 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-22 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-22 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|