001     1021478
005     20250204113754.0
024 7 _ |a 10.5194/acp-24-763-2024
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-00771
|2 datacite_doi
024 7 _ |a WOS:001166579000001
|2 WOS
037 _ _ |a FZJ-2024-00771
082 _ _ |a 550
100 1 _ |a Clemens, Jan
|0 P:(DE-Juel1)180256
|b 0
|e Corresponding author
245 _ _ |a A multi-scenario Lagrangian trajectory analysis to identify source regions of the Asian tropopause aerosol layer on the Indian subcontinent in August 2016
260 _ _ |a Katlenburg-Lindau
|c 2024
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706529453_11227
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Asian tropopause aerosol layer (ATAL) is present during the Asian summer monsoon season affecting the radiative balance of the atmosphere. However, the source regions and transport pathways of ATAL particles are still uncertain. Here, we investigate transport pathways from different regions at the model boundary layer (MBL) to the ATAL by combining two Lagrangian transport models (CLaMS, Chemical Lagrangian Model of the Stratosphere; MPTRAC, Massive-Parallel Trajectory Calculations) with balloon-borne measurements of the ATAL performed by the Compact Optical Backscatter Aerosol Detector (COBALD) above Nainital (India) in August 2016. Trajectories are initialised at the measured location of the ATAL and calculated 90 d backwards in time to investigate the relation between the measured, daily averaged, aerosol backscatter ratio and source regions at the MBL. Different simulation scenarios are performed to find differences and robust patterns when the reanalysis data (ERA5 or ERA-Interim), the trajectory model, the vertical coordinate (kinematic and diabatic approach) or the convective parameterisation are varied. The robust finding among all scenarios is that the largest continental air mass contributions originate from the Tibetan Plateau and the Indian subcontinent (mostly the Indo-Gangetic Plain), and the largest maritime air mass contributions in Asia come from the western Pacific (e.g. related to tropical cyclones). Additionally, all simulation scenarios indicate that the transport of maritime air from the tropical western Pacific to the region of the ATAL lowers the backscatter ratio (BSR) of the ATAL, while most scenarios indicate that the transport of polluted air from the Indo-Gangetic Plain increases the BSR. While the results corroborate key findings from previous ERA-Interim-based studies, they also highlight the variability in the contributions of different MBL regions to the ATAL depending on different simulation scenarios.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vogel, Bärbel
|0 P:(DE-Juel1)129164
|b 1
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 2
700 1 _ |a Griessbach, Sabine
|0 P:(DE-Juel1)129121
|b 3
700 1 _ |a Thomas, Nicole
|0 P:(DE-Juel1)129162
|b 4
700 1 _ |a Fadnavis, Suvarna
|0 0000-0003-4442-0755
|b 5
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 6
700 1 _ |a Peter, Thomas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ploeger, Felix
|0 P:(DE-Juel1)129141
|b 8
773 _ _ |a 10.5194/acp-24-763-2024
|g Vol. 24, no. 1, p. 763 - 787
|0 PERI:(DE-600)2069847-1
|n 1
|p 763 - 787
|t Atmospheric chemistry and physics
|v 24
|y 2024
|x 1680-7316
856 4 _ |u https://juser.fz-juelich.de/record/1021478/files/Invoice_Helmholtz-PUC-2024-11.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1021478/files/Invoice_Helmholtz-PUC-2024-11.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1021478/files/Invoice_Helmholtz-PUC-2024-11.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1021478/files/Invoice_Helmholtz-PUC-2024-11.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1021478/files/Invoice_Helmholtz-PUC-2024-11.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1021478/files/acp-24-763-2024.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1021478/files/acp-24-763-2024.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1021478/files/acp-24-763-2024.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1021478/files/acp-24-763-2024.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1021478/files/acp-24-763-2024.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1021478
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180256
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129162
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129138
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129141
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:38:07Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2022-12-20T09:38:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)CASA-20230315
|k CASA
|l Center for Advanced Simulation and Analytics
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)CASA-20230315
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21