Poster (After Call) FZJ-2024-01020

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Finding new bio-plausible Learning Rules using Deep Reinforcement Learning

 ;

2023

nternational conference on neuromorphic, natural and physical computing, NNPC, RWTH AachenHanover, RWTH Aachen, Germany, 25 Oct 2023 - 27 Oct 20232023-10-252023-10-27 [10.34734/FZJ-2024-01020]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: Gradient-based learning is still the best bet when training spiking neural networks on supervised tasks. Although backpropagation, the state-of-the-art in modern AI, is not bio-plausible, there exists a wide range of approximations with this property that achieve competitive performance, e.g. e-prop[1,2]. We propose a new framework called AlphaGrad that could find more such learning rules by systematically exploring the search space using Deep Reinforcement Learning and methods from Automatic Differentiation(AD).


Contributing Institute(s):
  1. Neuromorphic Software Eco System (PGI-15)
Research Program(s):
  1. 5234 - Emerging NC Architectures (POF4-523) (POF4-523)
  2. BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K) (BMBF-16ME0398K)
  3. BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399) (BMBF-16ME0399)

Appears in the scientific report 2024
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Presentations > Poster
Institute Collections > PGI > PGI-15
Workflow collections > Public records
Publications database
Open Access

 Record created 2024-01-29, last modified 2025-02-03


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)