001022543 001__ 1022543
001022543 005__ 20250204113801.0
001022543 0247_ $$2doi$$a10.5194/acp-24-1699-2024
001022543 0247_ $$2ISSN$$a1680-7316
001022543 0247_ $$2ISSN$$a1680-7324
001022543 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01520
001022543 0247_ $$2WOS$$aWOS:001189421800001
001022543 037__ $$aFZJ-2024-01520
001022543 082__ $$a550
001022543 1001_ $$0P:(DE-HGF)0$$aBartolomé García, Irene$$b0$$eCorresponding author
001022543 245__ $$aTechnical note: Bimodal parameterizations of in situ ice cloud particle size distributions
001022543 260__ $$aKatlenburg-Lindau$$bEGU$$c2024
001022543 3367_ $$2DRIVER$$aarticle
001022543 3367_ $$2DataCite$$aOutput Types/Journal article
001022543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1707994373_1068
001022543 3367_ $$2BibTeX$$aARTICLE
001022543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001022543 3367_ $$00$$2EndNote$$aJournal Article
001022543 520__ $$aThe cloud particle size distribution (PSD) is a key parameter for the retrieval of microphysical and optical properties from remote-sensing instruments, which in turn are necessary for determining the radiative effect of clouds. Current representations of PSDs for ice clouds rely on parameterizations that were largely based on aircraft in situ measurements where the distribution of small ice crystals were uncertain. This makes current parameterizations deficient to simulate remote-sensing observations sensitive to small ice, such as from lidar and thermal infrared instruments. In this study we fit the in situ PSDs of ice crystals from the JULIA (JÜLich In situ Aircraft data set) database, which consists of 11 campaigns covering the tropics, midlatitudes and the Arctic, consistently processed and considered more robust in their measurements of small ice. For the fitting, we implement an established approach to PSD parameterizations, which consists of finding an adequate set of parameters for a modified gamma function after normalization of both PSD axes. These parameters are constrained to match in situ measurements when predicting microphysical properties from the PSDs, via a cost function minimization method. We selected the ice water content and the ice crystal number concentration, which are currently key parameters for modern satellite retrievals and model microphysics schemes. We found that a bimodal parameterization yields better results than a monomodal one. The bimodal parameterization has a lower spread for almost all ice crystal sizes over the entire range of analyzed temperatures and fits better the observations, especially for particles between 20 and about 110 µm at temperatures between −60 and −20 ∘C. For this temperature range, the root mean square error for the retrieved Nice is reduced from 0.36 to 0.20. This demonstrates a clear advantage to considering the bimodality of PSDs, e.g., for satellite retrievals.
001022543 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001022543 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001022543 7001_ $$0P:(DE-HGF)0$$aSourdeval, Odran$$b1
001022543 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b2
001022543 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b3
001022543 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-24-1699-2024$$gVol. 24, no. 3, p. 1699 - 1716$$n3$$p1699 - 1716$$tAtmospheric chemistry and physics$$v24$$x1680-7316$$y2024
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/Invoice_Helmholtz-PUC-2024-18.pdf
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/Invoice_Helmholtz-PUC-2024-18.gif?subformat=icon$$xicon
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/Invoice_Helmholtz-PUC-2024-18.jpg?subformat=icon-1440$$xicon-1440
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/Invoice_Helmholtz-PUC-2024-18.jpg?subformat=icon-180$$xicon-180
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/Invoice_Helmholtz-PUC-2024-18.jpg?subformat=icon-640$$xicon-640
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/acp-24-1699-2024.pdf$$yOpenAccess
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/acp-24-1699-2024.gif?subformat=icon$$xicon$$yOpenAccess
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/acp-24-1699-2024.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/acp-24-1699-2024.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001022543 8564_ $$uhttps://juser.fz-juelich.de/record/1022543/files/acp-24-1699-2024.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001022543 8767_ $$8Helmholtz-PUC-2024-18$$92024-02-07$$a1200200874$$d2024-02-13$$eAPC$$jZahlung erfolgt
001022543 909CO $$ooai:juser.fz-juelich.de:1022543$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001022543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001022543 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IEK-7$$b0
001022543 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University Cologne$$b0
001022543 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Lille France$$b1
001022543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b2$$kFZJ
001022543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b3$$kFZJ
001022543 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001022543 9141_ $$y2024
001022543 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001022543 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001022543 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001022543 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001022543 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001022543 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001022543 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001022543 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001022543 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001022543 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001022543 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001022543 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001022543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001022543 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001022543 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001022543 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001022543 920__ $$lyes
001022543 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
001022543 9801_ $$aAPC
001022543 9801_ $$aFullTexts
001022543 980__ $$ajournal
001022543 980__ $$aVDB
001022543 980__ $$aUNRESTRICTED
001022543 980__ $$aI:(DE-Juel1)IEK-7-20101013
001022543 980__ $$aAPC
001022543 981__ $$aI:(DE-Juel1)ICE-4-20101013