001     1023017
005     20250204113803.0
024 7 _ |a 10.1021/acs.jpclett.3c03295
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01600
|2 datacite_doi
024 7 _ |a 38349906
|2 pmid
024 7 _ |a WOS:001167244700001
|2 WOS
037 _ _ |a FZJ-2024-01600
082 _ _ |a 530
100 1 _ |a Bruch, Nils
|0 P:(DE-Juel1)191033
|b 0
245 _ _ |a Incorporating Electrolyte Correlation Effects into Variational Models of Electrochemical Interfaces
260 _ _ |a Washington, DC
|c 2024
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714583031_3667
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose a way for obtaining a classical free energy density functional for electrolytes based on a first-principle many-body partition function. Via a one-loop expansion, we include coulombic correlations beyond the conventional mean-field approximation. To examine electrochemical interfaces, we integrate the electrolyte free energy functional into a hybrid quantum-classical model. This scheme self-consistently couples electronic, ionic, and solvent degrees of freedom and incorporates electrolyte correlation effects. The derived free energy functional causes a correlation-induced enhancement in interfacial counterion density and leads to an overall increase in capacitance. This effect is partially compensated by a reduction of the dielectric permittivity of interfacial water. At larger surface charge densities, ion crowding at the interface stifles these correlation effects. While scientifically intriguing already at planar interfaces, we anticipate these correlation effects to play an essential role for electrolytes in nanoconfinement.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Binninger, Tobias
|0 P:(DE-Juel1)194968
|b 1
700 1 _ |a Huang, Jun
|0 P:(DE-Juel1)192568
|b 2
700 1 _ |a Eikerling, Michael
|0 P:(DE-Juel1)178034
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acs.jpclett.3c03295
|g p. 2015 - 2022
|0 PERI:(DE-600)2522838-9
|n 7
|p 2015 - 2022
|t The journal of physical chemistry letters
|v 15
|y 2024
|x 1948-7185
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023017/files/bruch-et-al-2024-incorporating-electrolyte-correlation-effects-into-variational-models-of-electrochemical-interfaces.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023017
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191033
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194968
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)192568
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)178034
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM LETT : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J PHYS CHEM LETT : 2022
|d 2025-01-07
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21