001023042 001__ 1023042
001023042 005__ 20240226075501.0
001023042 0247_ $$2doi$$a10.48550/ARXIV.2309.03608
001023042 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01623
001023042 037__ $$aFZJ-2024-01623
001023042 1001_ $$0P:(DE-Juel1)194121$$aGuedes, Thiago L. M.$$b0$$ufzj
001023042 245__ $$aQuantum cellular automata for quantum error correction and density classification
001023042 260__ $$barXiv$$c2023
001023042 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1707999992_1068
001023042 3367_ $$2ORCID$$aWORKING_PAPER
001023042 3367_ $$028$$2EndNote$$aElectronic Article
001023042 3367_ $$2DRIVER$$apreprint
001023042 3367_ $$2BibTeX$$aARTICLE
001023042 3367_ $$2DataCite$$aOutput Types/Working Paper
001023042 520__ $$aQuantum cellular automata are alternative quantum-computing paradigms to quantum Turing machines and quantum circuits. Their working mechanisms are inherently automated, therefore measurement free, and they act in a translation invariant manner on all cells/qudits of a register, generating a global rule that updates cell states locally, i.e., based solely on the states of their neighbors. Although desirable features in many applications, it is generally not clear to which extent these fully automated discrete-time local updates can generate and sustain long-range order in the (noisy) systems they act upon. In special, whether and how quantum cellular automata can perform quantum error correction remain open questions. We close this conceptual gap by proposing quantum cellular automata with quantum-error-correction capabilities. We design and investigate two (quasi-)one dimensional quantum cellular automata based on known classical cellular-automata rules with density-classification capabilities, namely the local majority voting and the two-line voting. We investigate the performances of those quantum cellular automata as quantum-memory components by simulating the number of update steps required for the logical information they act upon to be afflicted by a logical bit flip. The proposed designs pave a way to further explore the potential of new types of quantum cellular automata with built-in quantum error correction capabilities.
001023042 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001023042 588__ $$aDataset connected to DataCite
001023042 650_7 $$2Other$$aQuantum Physics (quant-ph)
001023042 650_7 $$2Other$$aFOS: Physical sciences
001023042 7001_ $$0P:(DE-Juel1)201340$$aWinter, Don$$b1$$ufzj
001023042 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b2$$ufzj
001023042 773__ $$a10.48550/ARXIV.2309.03608
001023042 8564_ $$uhttps://juser.fz-juelich.de/record/1023042/files/2309.03608.pdf$$yOpenAccess
001023042 8564_ $$uhttps://juser.fz-juelich.de/record/1023042/files/2309.03608.gif?subformat=icon$$xicon$$yOpenAccess
001023042 8564_ $$uhttps://juser.fz-juelich.de/record/1023042/files/2309.03608.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023042 8564_ $$uhttps://juser.fz-juelich.de/record/1023042/files/2309.03608.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023042 8564_ $$uhttps://juser.fz-juelich.de/record/1023042/files/2309.03608.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023042 909CO $$ooai:juser.fz-juelich.de:1023042$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001023042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194121$$aForschungszentrum Jülich$$b0$$kFZJ
001023042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201340$$aForschungszentrum Jülich$$b1$$kFZJ
001023042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b2$$kFZJ
001023042 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001023042 9141_ $$y2023
001023042 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023042 920__ $$lyes
001023042 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
001023042 980__ $$apreprint
001023042 980__ $$aVDB
001023042 980__ $$aUNRESTRICTED
001023042 980__ $$aI:(DE-Juel1)PGI-2-20110106
001023042 9801_ $$aFullTexts