Preprint FZJ-2024-01623

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Quantum cellular automata for quantum error correction and density classification

 ;  ;

2023
arXiv

arXiv () [10.48550/ARXIV.2309.03608]

This record in other databases:

Please use a persistent id in citations: doi:  doi:

Abstract: Quantum cellular automata are alternative quantum-computing paradigms to quantum Turing machines and quantum circuits. Their working mechanisms are inherently automated, therefore measurement free, and they act in a translation invariant manner on all cells/qudits of a register, generating a global rule that updates cell states locally, i.e., based solely on the states of their neighbors. Although desirable features in many applications, it is generally not clear to which extent these fully automated discrete-time local updates can generate and sustain long-range order in the (noisy) systems they act upon. In special, whether and how quantum cellular automata can perform quantum error correction remain open questions. We close this conceptual gap by proposing quantum cellular automata with quantum-error-correction capabilities. We design and investigate two (quasi-)one dimensional quantum cellular automata based on known classical cellular-automata rules with density-classification capabilities, namely the local majority voting and the two-line voting. We investigate the performances of those quantum cellular automata as quantum-memory components by simulating the number of update steps required for the logical information they act upon to be afflicted by a logical bit flip. The proposed designs pave a way to further explore the potential of new types of quantum cellular automata with built-in quantum error correction capabilities.

Keyword(s): Quantum Physics (quant-ph) ; FOS: Physical sciences


Contributing Institute(s):
  1. Theoretische Nanoelektronik (PGI-2)
Research Program(s):
  1. 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) (POF4-522)

Appears in the scientific report 2023
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Reports > Preprints
Institute Collections > PGI > PGI-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2024-02-15, last modified 2024-02-26


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)