001     1023042
005     20240226075501.0
024 7 _ |a 10.48550/ARXIV.2309.03608
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01623
|2 datacite_doi
037 _ _ |a FZJ-2024-01623
100 1 _ |a Guedes, Thiago L. M.
|0 P:(DE-Juel1)194121
|b 0
|u fzj
245 _ _ |a Quantum cellular automata for quantum error correction and density classification
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1707999992_1068
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Quantum cellular automata are alternative quantum-computing paradigms to quantum Turing machines and quantum circuits. Their working mechanisms are inherently automated, therefore measurement free, and they act in a translation invariant manner on all cells/qudits of a register, generating a global rule that updates cell states locally, i.e., based solely on the states of their neighbors. Although desirable features in many applications, it is generally not clear to which extent these fully automated discrete-time local updates can generate and sustain long-range order in the (noisy) systems they act upon. In special, whether and how quantum cellular automata can perform quantum error correction remain open questions. We close this conceptual gap by proposing quantum cellular automata with quantum-error-correction capabilities. We design and investigate two (quasi-)one dimensional quantum cellular automata based on known classical cellular-automata rules with density-classification capabilities, namely the local majority voting and the two-line voting. We investigate the performances of those quantum cellular automata as quantum-memory components by simulating the number of update steps required for the logical information they act upon to be afflicted by a logical bit flip. The proposed designs pave a way to further explore the potential of new types of quantum cellular automata with built-in quantum error correction capabilities.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Winter, Don
|0 P:(DE-Juel1)201340
|b 1
|u fzj
700 1 _ |a Müller, Markus
|0 P:(DE-Juel1)179396
|b 2
|u fzj
773 _ _ |a 10.48550/ARXIV.2309.03608
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023042/files/2309.03608.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023042/files/2309.03608.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023042/files/2309.03608.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023042/files/2309.03608.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023042/files/2309.03608.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023042
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)201340
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179396
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21