001     1023043
005     20240226075501.0
024 7 _ |a 10.48550/ARXIV.2306.16375
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01624
|2 datacite_doi
037 _ _ |a FZJ-2024-01624
100 1 _ |a Xue, Ran
|b 0
245 _ _ |a Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function
260 _ _ |c 2023
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1708005040_1434
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a The connectivity within single carrier information-processing devices requires transport and storage of single charge quanta. Our all-electrical Si/SiGe shuttle device, called quantum bus (QuBus), spans a length of 10 $\mathrmμ$m and is operated by only six simply-tunable voltage pulses. It operates in conveyor-mode, i.e. the electron is adiabatically transported while confined to a moving QD. We introduce a characterization method, called shuttle-tomography, to benchmark the potential imperfections and local shuttle-fidelity of the QuBus. The fidelity of the single-electron shuttle across the full device and back (a total distance of 19 $\mathrmμ$m) is $(99.7 \pm 0.3)\,\%$. Using the QuBus, we position and detect up to 34 electrons and initialize a register of 34 quantum dots with arbitrarily chosen patterns of zero and single-electrons. The simple operation signals, compatibility with industry fabrication and low spin-environment-interaction in $^{28}$Si/SiGe, promises spin-conserving transport of spin qubits for quantum connectivity in quantum computing architectures.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Beer, Max
|b 1
700 1 _ |a Seidler, Inga
|b 2
700 1 _ |a Humpohl, Simon
|b 3
700 1 _ |a Tu, Jhih-Sian
|b 4
700 1 _ |a Trellenkamp, Stefan
|b 5
700 1 _ |a Struck, Tom
|0 P:(DE-Juel1)196096
|b 6
|u fzj
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 7
|u fzj
700 1 _ |a Schreiber, Lars R.
|0 P:(DE-Juel1)172641
|b 8
|e Corresponding author
773 _ _ |a 10.48550/ARXIV.2306.16375
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023043/files/2306.16375.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023043/files/2306.16375.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023043/files/2306.16375.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023043/files/2306.16375.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023043/files/2306.16375.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023043
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)196096
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172641
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21