001023078 001__ 1023078
001023078 005__ 20250204113804.0
001023078 0247_ $$2doi$$a10.1002/smll.202307678
001023078 0247_ $$2ISSN$$a1613-6810
001023078 0247_ $$2ISSN$$a1613-6829
001023078 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01651
001023078 0247_ $$2pmid$$a38258588
001023078 0247_ $$2WOS$$aWOS:001147087000001
001023078 037__ $$aFZJ-2024-01651
001023078 041__ $$aEnglish
001023078 082__ $$a620
001023078 1001_ $$0P:(DE-Juel1)178838$$aKuo, Liang-Yin$$b0
001023078 245__ $$aDoping‐Induced Surface and Grain Boundary Effects in Ni‐Rich Layered Cathode Materials
001023078 260__ $$aWeinheim$$bWiley-VCH$$c2024
001023078 3367_ $$2DRIVER$$aarticle
001023078 3367_ $$2DataCite$$aOutput Types/Journal article
001023078 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719996010_18876
001023078 3367_ $$2BibTeX$$aARTICLE
001023078 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023078 3367_ $$00$$2EndNote$$aJournal Article
001023078 500__ $$agranted through JARA-HPC on the supercomputer JURECA (evtl. müssen beide Angaben noch hinzugefügt werden!)
001023078 520__ $$aAbstractIn this work, the effects of dopant size and oxidation state on the structure and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 (NCM811) are investigated. It is shown that doping with boron (B) which has a small ionic radius and an oxidation state of 3+, leads to the formation of a boron oxide-containing surface coating (probably Li3BO3), mainly on the outer surface of the secondary particles. Due to this effect, boron only slightly affects the size of the primary particle and the initial capacity, but significantly improves the capacity retention. On the other hand, the dopant ruthenium (Ru) with a larger ionic radius and a higher oxidation state of 5+ can be stabilized within the secondary particles and does not experience a segregation to the outer agglomerate surface. However, the Ru dopant preferentially occupies incoherent grain boundary sites, resulting in smaller primary particle size and initial capacity than for the B-doped and pristine NCM811. This work demonstrates that a small percentage of dopant (2 mol%) cannot significantly affect bulk properties, but it can strongly influence the surface and/or grain boundary properties of microstructure and thus the overall performance of cathode materials.
001023078 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001023078 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001023078 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023078 7001_ $$0P:(DE-Juel1)177016$$aRoitzheim, Christoph$$b1
001023078 7001_ $$0P:(DE-Juel1)177677$$aValencia, Helen$$b2
001023078 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b3
001023078 7001_ $$0P:(DE-Juel1)139534$$aMöller, Sören$$b4
001023078 7001_ $$0P:(DE-HGF)0$$aMyung, Seung-Taek$$b5
001023078 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b6
001023078 7001_ $$0P:(DE-Juel1)162228$$aGuillon, Olivier$$b7
001023078 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b8
001023078 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b9$$eCorresponding author
001023078 770__ $$zISSN: 1613-6810
001023078 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202307678$$gp. 2307678$$n26$$p2307678$$tSmall$$v20$$x1613-6810$$y2024
001023078 8564_ $$uhttps://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.pdf$$yOpenAccess
001023078 8564_ $$uhttps://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.gif?subformat=icon$$xicon$$yOpenAccess
001023078 8564_ $$uhttps://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023078 8564_ $$uhttps://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023078 8564_ $$uhttps://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023078 8767_ $$d2024-02-16$$eHybrid-OA$$jDEAL
001023078 909CO $$ooai:juser.fz-juelich.de:1023078$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001023078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177016$$aForschungszentrum Jülich$$b1$$kFZJ
001023078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177677$$aForschungszentrum Jülich$$b2$$kFZJ
001023078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b3$$kFZJ
001023078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139534$$aForschungszentrum Jülich$$b4$$kFZJ
001023078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b6$$kFZJ
001023078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b7$$kFZJ
001023078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b8$$kFZJ
001023078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b9$$kFZJ
001023078 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001023078 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001023078 9141_ $$y2024
001023078 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001023078 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001023078 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001023078 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001023078 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger
001023078 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001023078 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023078 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2022$$d2024-12-27
001023078 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001023078 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001023078 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001023078 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
001023078 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001023078 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL : 2022$$d2024-12-27
001023078 920__ $$lyes
001023078 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
001023078 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
001023078 9801_ $$aAPC
001023078 9801_ $$aFullTexts
001023078 980__ $$ajournal
001023078 980__ $$aVDB
001023078 980__ $$aUNRESTRICTED
001023078 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001023078 980__ $$aI:(DE-Juel1)IEK-1-20101013
001023078 980__ $$aAPC
001023078 981__ $$aI:(DE-Juel1)IMD-2-20101013