001     1023078
005     20250204113804.0
024 7 _ |a 10.1002/smll.202307678
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-01651
|2 datacite_doi
024 7 _ |a 38258588
|2 pmid
024 7 _ |a WOS:001147087000001
|2 WOS
037 _ _ |a FZJ-2024-01651
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Kuo, Liang-Yin
|0 P:(DE-Juel1)178838
|b 0
245 _ _ |a Doping‐Induced Surface and Grain Boundary Effects in Ni‐Rich Layered Cathode Materials
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719996010_18876
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a granted through JARA-HPC on the supercomputer JURECA (evtl. müssen beide Angaben noch hinzugefügt werden!)
520 _ _ |a AbstractIn this work, the effects of dopant size and oxidation state on the structure and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 (NCM811) are investigated. It is shown that doping with boron (B) which has a small ionic radius and an oxidation state of 3+, leads to the formation of a boron oxide-containing surface coating (probably Li3BO3), mainly on the outer surface of the secondary particles. Due to this effect, boron only slightly affects the size of the primary particle and the initial capacity, but significantly improves the capacity retention. On the other hand, the dopant ruthenium (Ru) with a larger ionic radius and a higher oxidation state of 5+ can be stabilized within the secondary particles and does not experience a segregation to the outer agglomerate surface. However, the Ru dopant preferentially occupies incoherent grain boundary sites, resulting in smaller primary particle size and initial capacity than for the B-doped and pristine NCM811. This work demonstrates that a small percentage of dopant (2 mol%) cannot significantly affect bulk properties, but it can strongly influence the surface and/or grain boundary properties of microstructure and thus the overall performance of cathode materials.
536 _ _ |a 5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)
|0 G:(DE-HGF)POF4-5353
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Roitzheim, Christoph
|0 P:(DE-Juel1)177016
|b 1
700 1 _ |a Valencia, Helen
|0 P:(DE-Juel1)177677
|b 2
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 3
700 1 _ |a Möller, Sören
|0 P:(DE-Juel1)139534
|b 4
700 1 _ |a Myung, Seung-Taek
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 6
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)162228
|b 7
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 8
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 9
|e Corresponding author
770 _ _ |z ISSN: 1613-6810
773 _ _ |a 10.1002/smll.202307678
|g p. 2307678
|0 PERI:(DE-600)2168935-0
|n 26
|p 2307678
|t Small
|v 20
|y 2024
|x 1613-6810
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1023078/files/Small%20-%202024%20-%20Kuo%20-%20Doping%E2%80%90Induced%20Surface%20and%20Grain%20Boundary%20Effects%20in%20Ni%E2%80%90Rich%20Layered%20Cathode%20Materials.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023078
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)177016
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)162228
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171780
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5353
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL : 2022
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21