001023490 001__ 1023490 001023490 005__ 20240709082217.0 001023490 0247_ $$2doi$$a10.1038/s44287-023-00006-5 001023490 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01722 001023490 037__ $$aFZJ-2024-01722 001023490 1001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b0$$eCorresponding author 001023490 245__ $$aMetal electrodes for next-generation rechargeable batteries 001023490 260__ $$a[London]$$bNature Publishing Group UK$$c2024 001023490 3367_ $$2DRIVER$$aarticle 001023490 3367_ $$2DataCite$$aOutput Types/Journal article 001023490 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712748761_24403 001023490 3367_ $$2BibTeX$$aARTICLE 001023490 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001023490 3367_ $$00$$2EndNote$$aJournal Article 001023490 500__ $$a Zudem unterstützt durch BMBF Grants: FB2-Hybrid (13XP0428A) und LISI-2 (13XP0509A). 001023490 520__ $$aThe electrification of transport and the transition to renewable energy sources are driving demand for the versatile and efficient storage of electrical energy — principally batteries, which can store energy with high efficiency, in a variety of designs and sizes. Compared to conventional batteries that contain insertion anodes, next-generation rechargeable batteries with metal anodes can yield more favourable energy densities, thanks to their high specific capacities and low electrode potentials. In this Review, we cover recent progress in metal anodes for rechargeable batteries. We examine design concepts and application opportunities and highlight the differences between metal and insertion-type electrodes in interface (two-dimensional) and interphase (three-dimensional) chemistries. We conclude by analysing the available cell chemistries and architectures, focusing on the design strategies for sustainability, as well as discussing existing roadmaps for next-generation batteries. 001023490 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001023490 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1 001023490 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x2 001023490 536__ $$0G:(DE-Juel1)BMBF-13XP0429A$$aFB2-POLY - Zellplattform Polymere (BMBF-13XP0429A)$$cBMBF-13XP0429A$$x3 001023490 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001023490 7001_ $$0P:(DE-Juel1)164855$$aLennartz, Peter$$b1$$eFirst author 001023490 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$eCorresponding author 001023490 773__ $$0PERI:(DE-600)3177793-4$$a10.1038/s44287-023-00006-5$$gVol. 1, no. 2, p. 79 - 92$$n2$$p79 - 92$$tNature reviews / Electrical engineering$$v1$$x2948-1201$$y2024 001023490 8564_ $$uhttps://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.pdf$$yPublished on 2024-01-29. Available in OpenAccess from 2024-07-29. 001023490 8564_ $$uhttps://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.gif?subformat=icon$$xicon$$yPublished on 2024-01-29. Available in OpenAccess from 2024-07-29. 001023490 8564_ $$uhttps://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2024-01-29. Available in OpenAccess from 2024-07-29. 001023490 8564_ $$uhttps://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.jpg?subformat=icon-180$$xicon-180$$yPublished on 2024-01-29. Available in OpenAccess from 2024-07-29. 001023490 8564_ $$uhttps://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.jpg?subformat=icon-640$$xicon-640$$yPublished on 2024-01-29. Available in OpenAccess from 2024-07-29. 001023490 909CO $$ooai:juser.fz-juelich.de:1023490$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001023490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b0$$kFZJ 001023490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164855$$aForschungszentrum Jülich$$b1$$kFZJ 001023490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ 001023490 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001023490 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1 001023490 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x2 001023490 9141_ $$y2024 001023490 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 001023490 920__ $$lyes 001023490 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001023490 9801_ $$aFullTexts 001023490 980__ $$ajournal 001023490 980__ $$aVDB 001023490 980__ $$aUNRESTRICTED 001023490 980__ $$aI:(DE-Juel1)IEK-12-20141217 001023490 981__ $$aI:(DE-Juel1)IMD-4-20141217