001     1023490
005     20240709082217.0
024 7 _ |a 10.1038/s44287-023-00006-5
|2 doi
024 7 _ |a 10.34734/FZJ-2024-01722
|2 datacite_doi
037 _ _ |a FZJ-2024-01722
100 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 0
|e Corresponding author
245 _ _ |a Metal electrodes for next-generation rechargeable batteries
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712748761_24403
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Zudem unterstützt durch BMBF Grants: FB2-Hybrid (13XP0428A) und LISI-2 (13XP0509A).
520 _ _ |a The electrification of transport and the transition to renewable energy sources are driving demand for the versatile and efficient storage of electrical energy — principally batteries, which can store energy with high efficiency, in a variety of designs and sizes. Compared to conventional batteries that contain insertion anodes, next-generation rechargeable batteries with metal anodes can yield more favourable energy densities, thanks to their high specific capacities and low electrode potentials. In this Review, we cover recent progress in metal anodes for rechargeable batteries. We examine design concepts and application opportunities and highlight the differences between metal and insertion-type electrodes in interface (two-dimensional) and interphase (three-dimensional) chemistries. We conclude by analysing the available cell chemistries and architectures, focusing on the design strategies for sustainability, as well as discussing existing roadmaps for next-generation batteries.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 1
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 2
536 _ _ |a FB2-POLY - Zellplattform Polymere (BMBF-13XP0429A)
|0 G:(DE-Juel1)BMBF-13XP0429A
|c BMBF-13XP0429A
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lennartz, Peter
|0 P:(DE-Juel1)164855
|b 1
|e First author
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|e Corresponding author
773 _ _ |a 10.1038/s44287-023-00006-5
|g Vol. 1, no. 2, p. 79 - 92
|0 PERI:(DE-600)3177793-4
|n 2
|p 79 - 92
|t Nature reviews / Electrical engineering
|v 1
|y 2024
|x 2948-1201
856 4 _ |y Published on 2024-01-29. Available in OpenAccess from 2024-07-29.
|u https://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.pdf
856 4 _ |y Published on 2024-01-29. Available in OpenAccess from 2024-07-29.
|x icon
|u https://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.gif?subformat=icon
856 4 _ |y Published on 2024-01-29. Available in OpenAccess from 2024-07-29.
|x icon-1440
|u https://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.jpg?subformat=icon-1440
856 4 _ |y Published on 2024-01-29. Available in OpenAccess from 2024-07-29.
|x icon-180
|u https://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.jpg?subformat=icon-180
856 4 _ |y Published on 2024-01-29. Available in OpenAccess from 2024-07-29.
|x icon-640
|u https://juser.fz-juelich.de/record/1023490/files/JUSER_NATREVELECTRENG2024.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1023490
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172047
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164855
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 2
914 1 _ |y 2024
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21