001023520 001__ 1023520
001023520 005__ 20250204113807.0
001023520 0247_ $$2doi$$a10.1002/aesr.202400032
001023520 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-01731
001023520 0247_ $$2WOS$$aWOS:001159746500001
001023520 037__ $$aFZJ-2024-01731
001023520 082__ $$a333.7
001023520 1001_ $$0P:(DE-Juel1)188562$$aShcherbachenko, Sergey$$b0
001023520 245__ $$aHigh‐Bandgap Perovskites for Efficient Indoor Light Harvesting
001023520 260__ $$aWeinheim$$bWiley-VCH$$c2024
001023520 3367_ $$2DRIVER$$aarticle
001023520 3367_ $$2DataCite$$aOutput Types/Journal article
001023520 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1716368398_20545
001023520 3367_ $$2BibTeX$$aARTICLE
001023520 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001023520 3367_ $$00$$2EndNote$$aJournal Article
001023520 520__ $$aThe use of metal-halide perovskites in photovoltaic applications has become increasingly attractive due to their low-temperature manufacturing processes and long charge-carrier lifetimes. High-bandgap perovskite solar cells have potential for indoor applications due to their efficient absorption of the spectrum of light-emitting diodes (LEDs). This study investigates the performance of high-bandgap perovskite solar cells under a wide range of lighting conditions, including a commercially available white LED lamp with a 5–40 000 lx illuminance range and a standard 1 sun reference. The performance of CH3NH3PbI3-based perovskite solar cells to CH3NH3Pb(I0.8,Br0.2)3 solar cells with varying electron transport layers (ETL), including PCBM, PCBM:CMC, and CMC:ICBA fullerene combinations, is compared. Because the spectral response of perovskite solar cells covers the white LED spectrum very well, the major performance difference is related to the open-circuit voltage and fill factor. The cells with the CH3NH3Pb(I0.8,Br0.2)3 absorber layer and the CMC:ICBA ETL demonstrate superior open-circuit voltage and therefore a high efficiency above 29% at 200–500 lx, typical for indoor lighting.
001023520 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001023520 536__ $$0G:(EU-Grant)101115456$$aSUPERVAL - SUstainable Photo-ElectRochemical VALorization of flue gases (101115456)$$c101115456$$fHORIZON-EIC-2022-PATHFINDERCHALLENGES-01$$x1
001023520 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001023520 7001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b1
001023520 7001_ $$0P:(DE-Juel1)169264$$aLiu, Zhifa$$b2
001023520 7001_ $$0P:(DE-Juel1)176607$$aKin, Li-Chung$$b3
001023520 7001_ $$0P:(DE-Juel1)130308$$aZahren, Christoph$$b4
001023520 7001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b5$$ufzj
001023520 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b6
001023520 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b7$$eCorresponding author
001023520 773__ $$0PERI:(DE-600)3010017-3$$a10.1002/aesr.202400032$$gp. 2400032$$n5$$p2400032$$tAdvanced energy & sustainability research$$v5$$x2699-9412$$y2024
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.pdf$$yOpenAccess
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.pdf$$yOpenAccess
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.gif?subformat=icon$$xicon$$yOpenAccess
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Perovskite_paper_4_17.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.gif?subformat=icon$$xicon$$yOpenAccess
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001023520 8564_ $$uhttps://juser.fz-juelich.de/record/1023520/files/Adv%20Energy%20and%20Sustain%20Res%20-%202024%20-%20Shcherbachenko%20-%20High%E2%80%90Bandgap%20Perovskites%20for%20Efficient%20Indoor%20Light%20Harvesting.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001023520 8767_ $$8W-2024-00030-b$$92024-05-28$$d2024-03-08$$eAPC$$jZahlung erfolgt
001023520 909CO $$ooai:juser.fz-juelich.de:1023520$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001023520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188562$$aForschungszentrum Jülich$$b0$$kFZJ
001023520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich$$b1$$kFZJ
001023520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169264$$aForschungszentrum Jülich$$b2$$kFZJ
001023520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176607$$aForschungszentrum Jülich$$b3$$kFZJ
001023520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130308$$aForschungszentrum Jülich$$b4$$kFZJ
001023520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b5$$kFZJ
001023520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b6$$kFZJ
001023520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b7$$kFZJ
001023520 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001023520 9141_ $$y2024
001023520 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001023520 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001023520 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001023520 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001023520 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001023520 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-28
001023520 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-28
001023520 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERG SUST RES : 2022$$d2024-12-05
001023520 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001023520 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:09:31Z
001023520 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:09:31Z
001023520 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:09:31Z
001023520 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
001023520 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-05
001023520 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
001023520 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ENERG SUST RES : 2022$$d2024-12-05
001023520 920__ $$lyes
001023520 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
001023520 9801_ $$aAPC
001023520 9801_ $$aFullTexts
001023520 980__ $$ajournal
001023520 980__ $$aVDB
001023520 980__ $$aUNRESTRICTED
001023520 980__ $$aI:(DE-Juel1)IEK-5-20101013
001023520 980__ $$aAPC
001023520 981__ $$aI:(DE-Juel1)IMD-3-20101013