000010240 001__ 10240
000010240 005__ 20210129210518.0
000010240 0247_ $$2DOI$$a10.1143/JPSJ.79.074401
000010240 0247_ $$2WOS$$aWOS:000280096900022
000010240 0247_ $$2Handle$$a2128/22902
000010240 037__ $$aPreJuSER-10240
000010240 041__ $$aeng
000010240 082__ $$a530
000010240 084__ $$2WoS$$aPhysics, Multidisciplinary
000010240 1001_ $$0P:(DE-HGF)0$$aJin, F.$$b0
000010240 245__ $$aCorpuscular Model of Two-Beam Interference and Double-Slit Experiments with Single Photons
000010240 260__ $$aTokyo$$bThe Physical Society of Japan$$c2010
000010240 300__ $$a074401
000010240 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010240 3367_ $$2DataCite$$aOutput Types/Journal article
000010240 3367_ $$00$$2EndNote$$aJournal Article
000010240 3367_ $$2BibTeX$$aARTICLE
000010240 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010240 3367_ $$2DRIVER$$aarticle
000010240 440_0 $$03931$$aJournal of the Physical Society of Japan$$v79$$x0031-9015
000010240 500__ $$aWe would like to thank K. De Raedt, K. Keimpema, S. Zhao, M. Novotny, and B. Baten for many helpful comments. This work is partially supported by NCF, the Netherlands, by a Grant-in-Aid for Scientific Research on Priority Areas, and the Next Generation Super Computer Project, Nanoscience Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
000010240 520__ $$aWe introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double-slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The simulation comprises models that capture the essential features of the apparatuses used in the experiment, including the single-photon detectors recording individual detector clicks. We demonstrate that incorporating in the detector model, simple and minimalistic processes mimicking the memory and threshold behavior of single-photon detectors is sufficient to produce multipath interference patterns. These multipath interference patterns are built up by individual particles taking one single path to the detector where they arrive one-by-one. The particles in our model are not corpuscular in the standard, classical physics sense in that they are information carriers that exchange information with the apparatuses of the experimental set-up. The interference pattern is the final, collective outcome of the information exchanges of many particles with these apparatuses. The interference patterns are produced without making reference to the solution of a wave equation and without introducing signalling or non-local interactions between the particles or between different detection points on the detector screen.
000010240 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000010240 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000010240 588__ $$aDataset connected to Web of Science
000010240 650_7 $$2WoSType$$aJ
000010240 65320 $$2Author$$acomputer simulation
000010240 65320 $$2Author$$ainterference
000010240 65320 $$2Author$$adouble-slit experiments
000010240 65320 $$2Author$$aquantum theory
000010240 7001_ $$0P:(DE-HGF)0$$aYuan, S.$$b1
000010240 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b2
000010240 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b3$$uFZJ
000010240 7001_ $$0P:(DE-HGF)0$$aMiyashita, S.$$b4
000010240 773__ $$0PERI:(DE-600)2042147-3$$a10.1143/JPSJ.79.074401$$gVol. 79, p. 074401$$p074401$$q79<074401$$tJournal of the Physical Society of Japan$$v79$$x0031-9015$$y2010
000010240 8567_ $$uhttp://dx.doi.org/10.1143/JPSJ.79.074401
000010240 8564_ $$uhttps://juser.fz-juelich.de/record/10240/files/1005.0906.pdf$$yOpenAccess
000010240 8564_ $$uhttps://juser.fz-juelich.de/record/10240/files/1005.0906.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000010240 909CO $$ooai:juser.fz-juelich.de:10240$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000010240 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000010240 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000010240 9141_ $$y2010
000010240 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000010240 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010240 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000010240 970__ $$aVDB:(DE-Juel1)120491
000010240 980__ $$aVDB
000010240 980__ $$aConvertedRecord
000010240 980__ $$ajournal
000010240 980__ $$aI:(DE-Juel1)JSC-20090406
000010240 980__ $$aUNRESTRICTED
000010240 9801_ $$aFullTexts